November 19, 2024
CRM 마케팅이 중요해지면서 많은 기업들이 Braze를 도입하고 있다.
대부분 앱 푸시 발송과 개인화 마케팅을 위해 Braze를 사용하지만, 다양한 기능을 활용해 마케팅을 고도화하는 경우는 많지 않다.
아직 Braze 관련 학습 자료나 강의가 부족해 공식 문서에만 의존해야 하다 보니, 많은 마케터들이 Braze의 기능을 제대로 활용하지 못하고 있다.
이 글에서는 Braze를 제대로 활용하고 있는지 점검하고, 놓치고 있는 유용한 기능들을 소개하려 한다.
아래 Braze 용어 중 내가 사용한 적이 있거나, 사용하지 않았더라도 들어본 용어가 있는지 확인해 보자.
(Braze 이용자라면 누구나 사용하는, 꼭 알아야 하는 기능은 빼두었다.)
3개 이상 사용해 봤다면 Braze를 잘 활용하고 있는 셈이다.
하나도 사용해 보지 않았더라도 걱정하지 말자. 지금부터 각 기능의 활용법을 자세히 설명할 예정이다.
Frequency Cappping이란 사용자가 받는 메시지 수를 제한해 피로감을 줄여주는 기능이다.
설정 예시
위와 같이 채널별로 기간과 수신 횟수를 설정할 수 있고, Campaign이나 Canvas에 Tag를 추가하면 특정 캠페인에만 제한을 걸 수도 있다.
예를 들어 이벤트 태그가 있는 캠페인은 하루 1개만 발송하는 식이다.
"푸시가 너무 많이 와요", "인앱메시지가 자주 떠서 불편해요" 같은 VOC를 자주 받는다면 Frequency Capping을 적극 활용해보자. 사용자 경험도 개선하고 고객 만족도도 높일 수 있다.
Braze에서 자주 쓰는 필터로 'X Custom Event Property In Y Days'와 'X Purchase Property In Y Days'가 있다. 실시간으로 반영된다는 장점이 있지만, 몇 가지 제한사항이 있다.
반면 Segment Extension은 아래와 같은 장점이 있다.
예를 들어 일반 필터로는 '지난 30일간 패딩 구매자'만 찾을 수 있지만, Extension으로는 '지난 1년간 패딩 구매자' 세그먼트를 만들 수 있다.
단, Extension은 실시간 업데이트가 아닌 정해진 주기로 업데이트된다. 기존에는 매일 오전 12시마다 업데이트 되었는데, 최근 Weekly, Monthly 옵션이 추가됐다.
Webhook으로 카카오톡, 문자 메시지를 보내는 것 뿐만 아니라 빈 웹훅인 Spacer를 발송하여 A/B Test를 진행하거나, 성과를 측정하는 것도 가능하다.
Spacer 활용 사례
또한 잘못 설정된 Conversion 지표를 보완할 때도 유용하다.
Connected Content는 API를 통해 외부 데이터를 실시간으로 가져와 메시지에 활용하는 기능이다.
활용 가능한 데이터:
이러한 데이터는 Braze에 저장되지 않아 보안성이 높고, 실시간 데이터로 더 정확한 개인화가 가능하다.
API Response 값을 메시지에 바로 사용하거나, Liquid 구문으로 메시지 발송 조건으로 활용할 수도 있다.
API 개발이 필요하지만, 활용하면 한층 더 다양한 개인화 메시지를 만들 수 있다.
Connected Content 사용 사례
1. Open API 활용 : 누구나 이용할 수 있는 Open API를 활용하여 다양한 캠페인을 진행할 수 있다.
2. 내부 API 활용 : 기개발된 API가 있다면 해당 API를 활용하여 다양한 캠페인 운영이 가능하다.
Query Builder는 SQL Query를 사용해 데이터를 출력하는 기능이다.
Campaign Analytics와 Engagement Report를 통해 캠페인 발송 수와 전환 수는 확인할 수 있지만, 유저가 어떤 상품을 구매했는지, 혹은 다른 이벤트가 발생했는지는 알 수 없다.
유저 행동을 더 자세히 분석하고 싶다면 쿼리빌더를 활용해보자. SQL에 익숙하다면 직접 쿼리를 작성할 수 있고, 그렇지 않다면 Query Template이나, AI Query Builder를 통해 쿼리를 생성하여 사용하면 된다.
Query Builder를 통해 N Day Retention과 같은 데이터도 확인할 수 있다.
N Day Retention 활용 사례 보러가기
어트리뷰트 데이터 테이블은 지원하지 않지만, 캠페인, 캔버스, 이벤트, 세션 정보 같은 유용한 데이터는 쉽게 추출할 수 있다. 다양한 분석을 원한다면 Query Builder를 적극 활용하자.
(단, Query Builder는 매월 사용할 수 있는 크레딧이 있으니, 쿼리 실행 시 크레딧이 줄어드는 점을 주의해야 한다!)
앞서 언급한 기능 외에도 Braze를 더 깊이 활용할 수 있는 방법은 많다.
실무로 바빠서 Braze를 자세히 살펴볼 시간이 없더라도, 틈틈이 다양한 기능을 활용해 보다 효율적이고 정교한 CRM 마케팅을 진행하길 바란다.
또한 기존 기능에 새로운 요소가 추가되거나 새로운 기능이 출시되니, 매월 업데이트되는 Braze Release Note를 확인하는 것을 추천한다.
*글의 원문은 최영아님의 브런치스토리 에서도 읽어보실 수 있습니다.
October 24, 2024
요즘 물가가 오르면서 패스트푸드를 간편한 한 끼로 즐기는 분들 많으시죠? 그런데 각 브랜드들이 전하려는 메시지가 비슷하면서도 조금씩 다른 느낌을 받으신 적 있으신가요? 이번 시리즈에서는 F&B 브랜드들의 CRM 메시지를 목적별로 비교하고 분석해 드리려고 합니다. 각 브랜드가 어떤 기능을 중심으로 메시지를 전달하는지 함께 살펴보면 더욱 흥미로울 거예요.
[시리즈 목차]
이번 아티클에서는 모바일 앱과 오프라인 매장 연계에 대한 이야기를 나눠보겠습니다.
기존의 프랜차이즈 패스트푸드 브랜드들은 매장 데이터와 온라인 데이터의 통합 관리가 어려웠습니다. 매장별 특성과 문제점을 모두 반영하고, POS 데이터를 온라인과 연계하기 어려웠죠. 그러나 최근에는 지속적인 관리와 개선을 통해 많은 F&B 브랜드들이 매장 데이터를 효과적으로 연계하고 있습니다.
이들은 또한 모바일 앱과 오프라인 매장 데이터를 연계하여 마케팅에 활용해 왔는데요, CRM 마케팅에 있어 활용되는 IT 기술의 대표적인 사례로 모바일 앱 주문 기능과 위치 정보 수집 기능을 들 수 있습니다.
이러한 기능들을 통해 어떻게 고객과의 관계를 강화하고 있는지, 지금부터 자세히 살펴보겠습니다.
모바일 앱 주문 기능은 F&B 브랜드라면 거의 필수라고 할 정도로 모든 브랜드에서 도입하고 있는 기능입니다.
모바일 앱 주문을 통해 매장의 POS 주문 데이터를 온라인상의 멤버십이나 주문 내역 데이터와 매칭시켜 동일한 고객임을 구분할 수 있습니다.
유저를 매칭하여 동일인임을 확인했다면 이제 본격적으로 메시지에 이 데이터들을 활용할 차례입니다. 이제 각 F&B 프랜차이즈 브랜드(A/B/C/D)별로 모바일 앱 주문부터 실제 상품 수령까지의 과정을 비교해 볼게요.
브랜드 A는 앱 딜리버리 서비스를 자체적으로 운영하지 않고 외부 서비스에 맡기고 있어요. 딜리버리 앱이 별도로 있긴 하지만 활성화되어 있진 않죠. 그래서인지 모바일 앱을 통한 주문 기능에 집중하고 있는 것 같아요.
브랜드 B는 주문 현황을 앱 내에 표시하고, 고객이 선택한 픽업 방법에 따라 다른 안내를 제공합니다. 이 표기를 통해 고객에게 이후 과정을 자연스럽게 안내합니다.
또한 픽업 번호와 주문 번호를 별도의 알림톡으로 발송해 줍니다. 실제로 픽업 번호 안내가 명확해서 매장에서 주문을 찾는 데 어려움이 없었어요. 모든 주문에 대해 유료 채널로 메시지를 발송하면 비용이 부담될 수 있지만, 고객 입장에서는 가장 친절한 방법인 것 같아요.
브랜드 C
브랜드 C도 모바일 오더와 딜리버리 내역을 앱에서 동시에 제공하고 있어요. 픽업 번호 안내와 주문진행 현황을 실시간으로 확인할 수 있는데요, 조리 중, 조리 완료, 수령 완료 단계로 나뉘어 있어서 매장 데이터와 앱이 잘 연계되어 있음을 보여줍니다.
브랜드 D 역시 주문진행 현황을 앱 내에서 표시해 줍니다. 자체 딜리버리 서비스를 제공하고 있는데, 배달 예정 시간을 예측하여 안내하는 부분이 인상적이었어요. 다른 배달 앱과 비슷한 예측 로직을 사용하는 것으로 보이는데, 실제로 제품을 받아보는 시간도 예측 시간 범위 내에 들어왔습니다.
또한 배달이 완료되었을 때 앱 푸시로 알림을 보내주는데요, 배달을 기다리는 고객 입장에서는 메뉴가 언제 도착하는지 실시간으로 알고 싶기 때문에 이런 안내는 매우 유용하다고 생각됩니다. 딜리버리 시스템과 매장 내 POS/조리 상태 데이터, 모바일 앱 주문 데이터가 모두 연동되어 있다는 점을 알 수 있어요.
다음으로는 기기 위치 정보에 기반한 메시지를 살펴볼게요. 네 개의 F&B 브랜드 모두 위치 정보를 수집하고 있는데, 그중 흥미로운 기능과 메시지를 분석해 보았습니다.
브랜드 A는 모바일 오더 주문 시 수령 장소 옵션이 다양한 것이 특징이에요. 드라이브 스루 옵션이나 테이블에서 받기 옵션 등이 있는데, 특히 테이블에서 받기 옵션은 고객이 입력한 매장 위치와 테이블 번호를 기반으로 서비스를 제공하기 때문에 오프라인 매장 데이터와 모바일 앱이 잘 연동된 사례라고 볼 수 있어요.
브랜드 B는 수집한 위치 정보를 이용해 매장 근처에 인접했을 때 매장 방문을 유도하는 앱 푸시를 발송하고 있습니다.
메시지를 살펴보면, 매장의 위치를 상세하게 알려주어 고객이 한 번 더 매장을 눈여겨보고 방문하도록 하는 좋은 사례인 것 같아요.
브랜드 C는 브랜드 B와 비슷해 보이지만 조금 다른 점을 강조하고 있어요. 브랜드 C는 매장의 위치나 존재를 알리는 것보다 해당 매장에서 판매하는 특정 상품을 소개하는 데 초점을 맞추고 있습니다.
메시지를 보면, 매장 구매 이력이 있는 유저에게 판매하는 특정 상품에 대한 정보를 전달하여 구매를 유도하려는 목적이 강하게 나타나요.
브랜드 D
마지막으로 브랜드 D입니다.
브랜드 D는 위치 정보를 활용한 CRM 메시지를 발송하지는 않지만, 앱 내에서 각 매장의 혼잡도와 운영 정보를 제공하고 있어요.
점심과 아침 시간대에 확인해 보니, 고객들이 많이 붐비는지, 시간대에 따라 딜리버리 가능 여부를 매장에서 실시간으로 수정할 수 있게 구현되어 있었습니다. 이는 고객 입장에서 대기 시간을 줄이고 더 나은 서비스를 받을 수 있도록 도와주는 좋은 기능이라고 생각됩니다.
이렇게 각 F&B 브랜드들이 강조하는 메시지와 기능들을 살펴보았는데요, 조금 더 이해가 되셨나요? CRM 마케팅은 다양한 경로에서 수집한 데이터를 활용할 수 있다는 점이 가장 큰 장점이자 매력인 것 같아요.
이러한 데이터를 바탕으로 CRM 마케터들은 개인화된 정보를 담은 메시지를 고객들에게 전달할 수 있게 됩니다. 이런 초개인화 메시지는 결국 매출 성장으로 이어지죠. 기계적인 광고 노출에 비해 개인화 요소가 포함된 광고는 피로감이 적게 느껴지기 때문이에요.
본인에게 필요한 정보나 특정한 목적을 가진 광고라면 거부감 없이 받아들였던 경험, 다들 한 번쯤 있으시죠?
저희 마티니 CRM 팀에서는 다양한 기능과 상황에 맞는 메시지를 전달하기 위해 항상 노력하고 고민합니다. CRM 캠페인의 더 자세한 구현 사례가 궁금하시다면, 마티니 CRM 팀의 성공 사례를 확인해 보세요!
October 10, 2024
존 케이플즈는 미국에서 100년 전에 활동했던 카피라이터입니다. 카피라이터로 널리 알려져 있지만, 그는 오늘날 널리 쓰이는 광고 효율 테스트의 기틀을 다진 분석가이기도 했습니다. 1932년에 출간된 그의 책 『Tested advertising methods』에는 헤드라인 기반의 광고 효율 테스트 방법론과 20세기 초반의 실제 테스트 결과가 수록돼 있습니다.
그는 살아 있을 때 ‘광고가 눈에 띄는 것’을 강조했습니다. 그의 책과 카피라이터 커리어를 살펴보면 그는 단순히 “눈에 띄는 것”이 아니라 눈에 띄면서 ‘광고 효율이 좋은 것’을 중요하게 여겼습니다. 눈에 띄면서 광고 효율을 좋게 만드는 방법은 크게 세 가지가 있습니다. 첫 번째는 눈에 띄는 광고를 고객에게 보여주는 것이고, 두 번째는 마케터가 원하는 행동(KPI)을 할 가능성이 높은 고객에게 광고를 보여주는 것이며, 마지막으로 세 번째는 첫 번째와 두 번째 모두를 만족시키는 것입니다.
존 케이플즈는 광고의 성공을 결정짓는 요소로 매체, 카피, 위치, 계절을 꼽았습니다. 네 가지 요소 중에서 “매체”는 최근 기술이 발달함에 따라 급격하게 진화됐습니다. 한국광고총연합회의 광고정보센터에 따르면 매체는 “광고를 소비자에게 전달하는 도구”입니다. 이제는 우주의 은하 개수(약 1천 7백억 개) 보다도 많은 ‘광고 전달 도구(매체)’가 한 사람의 손바닥에 들어왔습니다. 실시간으로 광고의 성과를 측정하게 됐으며, 고객 행동 데이터를 분석해 ‘효율이 높을 것으로 추측되는 고객’을 특정해서 광고를 보여줄 수 있게 됐습니다. 매체가 진화됨에 따라 이제는 존 케이플즈의 시대보다 쉽게 눈에 띄면서 광고 효율을 좋게 만들 수 있는 환경이 갖춰줬습니다.
기술이 광고 시장의 변화를 이끌면서 매체를 나누는 기준도 새로 생겼습니다. 과거에 매체는 장소, 비용유무, 운영주체, 송출방식, 과금방식 등으로 분류됐습니다. 머신러닝에 기반한 개인화 광고 시대에 들어서면서 매체의 기술력에 따라 광고를 소비자에게 전달하는 방식이 달라졌고, 따라서 매체 자체가 지닌 기술스펙으로도 매체를 분류하게 됐습니다.
그럼 무수히 많은 기준들 중에서 퍼포먼스 마케팅에 가장 타당한 매체 분류 기준은 무엇일까요? 사실 , SA/DA, UA/RT, CPC/CPM, SAN(orSRN)/표준광고네트워크 등 널리 알려진 매체 분류 기준들은 하나의 특징을 임의로 선정해 분류한 결과일 뿐입니다. ‘타당한 매체 분류 기준’은 브랜드의 KPI가 결정합니다. 브랜드와 매체에 대한 퍼포먼스 마케터의 이해도는 브랜드의 비즈니스 임팩트를 촉발시키는 KPI 설정에 큰 영향을 줍니다.
예를 들어, KPI가 매출이라면 매출과 상관관계가 높은 지표(ex. ROAS, CVR(Purchase), ARPU, ARPPU 등)에 영향을 미치는 정도에 따라 매체를 분류하게 됩니다. 반대로 KPI가 신규고객유치라면 CAC(Costomer Acquisition Cost)와 상관관계가 높은 지표(CPC, CTR, CVR(Regi), CVR(Install), IPM, Retention 등)에 따라 매체를 분류하게 됩니다. 어느 매체가 어느 지표에 얼만큼의 영향을 주는지 아는 퍼포먼스 마케터만이 타당한 매체 분류 기준을 제시할 수 있습니다. 결국, 퍼포먼스 마케터의 역량 자체가 매체를 분류하는 기준이라고도 말할 수 있습니다.
퍼포먼스 마케팅, PA, CRM 솔루션을 연계해 진정한 풀퍼널 마케팅 전략을 구현하는 Martinee는 한 걸음 더 나아가서 매체와 주요 마테크 솔루션 사이의 연계 용이성도 매체를 분류하는 기준으로 설정합니다. 예를 들어, Meta, Tiktok 등은 PA 솔루션인 Amplitude와 연계해 세그먼트를 세분화하고 타겟팅에 활용할 수 있습니다. 유입 채널/캠페인별로 유저를 세분화하고 각 유저의 후행지표를 분석하는 것도 가능합니다.
실제로 퍼포먼스 마케터 박한석 매니저가 웹툰 카테고리에서 Amplitude를 활용해 고객 여정을 분석하고 퍼포먼스 마케팅 타겟팅 전략에 활용했던 사례를 소개해드리겠습니다. 고객 여정 중 특정 이벤트가 구매까지의 전환율이 높다는 점을 확인하고 신규 타겟팅 세그먼트로 활용해 MAU 10% 상승 및 D1 ROAS를 30% 달성했던 경험입니다.
유명 웹툰 플랫폼 A는 신규 유저의 유입이 줄고 기존 유저의 이탈이 가속화되는 상황이었으며, 전체 매출도 감소하는 추이를 보이고 있었습니다. RT 담당자였던 저는 기존 유저의 이탈을 막고, 이미 이탈한 유저는 재유입을 시켜 MAU 및 매출을 증대시켜야 했습니다.
해당 문제를 해결하기 위해서는 가장 먼저 고가치 유저의 이탈을 막는 것이 급선무라고 판단했습니다. Amplitude에서는 인 앱 이벤트별로 구매까지의 전환율이 얼마나 되는지 확인할 수 있었습니다. 다양한 이벤트 중 특정 이벤트의 구매 전환율은 12.17%였습니다. 다른 이벤트의 구매 전환율 1~6%에 비하면 약 6%p 높은 수치였습니다. 해당 이벤트를 발생시킨 유저의 특성은 프로덕트의 핵심 유저의 특성과 유사할 가능성이 높다라는 가설을 세웠습니다. 가설에 따라 이벤트의 ADID를 추출해 Amplitude와 연동된 매체(ex. Meta)에서 타겟팅했으며, 그 결과 MAU는 10% 상승했고 D1 ROAS는 30% 개선됐습니다. 해당 세그먼트는 RT 캠페인 뿐만 아니라 UA 캠페인의 유사 타겟(ex. Meat LAL)으로도 활용됐습니다.
타겟팅 전략을 기반으로 UA에 집중하는 퍼포먼스 마케팅 전략은 점차 효용이 떨어지고 있습니다. 개인정보보호 이슈가 붉어지면서 정교한 타겟팅이 어려워졌기 때문입니다. 그 연장선 상에서 1st-Party 데이터를 활용한 Growth, CRM 마케팅의 중요성이 강화됐습니다. 퍼포먼스 마케팅의 불황은 곧 매체의 불황이기도 했습니다. 매체들은 앞다퉈 Growth, CRM 솔루션 연계 기능을 도입하기 시작했습니다. 이제 매체는 퍼포먼스 마케팅과 Growth, CRM 마케팅을 연결하는 다리로서 기능합니다. 결국, 오늘날 “퍼포먼스 마케팅에 가장 타당한 매체 분류 기준”은 퍼포먼스 마케터의 브랜드, 매체, 그리고 Growth&CRM 솔루션들에 대한 이해까지 확장됐습니다. 그리고 Martinee는 그런 역량을 내재화한 업계 유일의 풀퍼널 마케팅 대행사입니다.
100년 전, 존 케이플즈는 온갖 데이터가 수기로 처리되고 성과의 추적조차 불가능했던 시절에 광고 효율을 테스트하고 마케팅 전략을 수립한 데이터 드리븐 마케팅의 선구자였습니다. 그런 그가 오늘날 마테크의 발전을 본다면 얼마나 기쁠까요? 그 기쁨을 누리기 위해 존 케이플즈는 오늘과 내일이 다른 기술의 발전을 불철주야 공부했을 테죠. 그런 그에 대한 오마주 문장으로 이 글을 마치겠습니다.
“퍼포먼스 마케터가 저지를 수 있는 최대의 죄악은 매체의 변화에 둔감한 것이다.”
October 7, 2024
행사명 : 마티니 Growth팀 채용설명회
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 10월 22일 화요일 오후 7시 ~ 9시
2024년 10월 22일 목요일 오후 7시 Marketing Intelligence People, 마티니와 마티니 Growth팀을 여러분들께 소개합니다.
Growth팀에서는 그로스 매니저를 채용 중에 있으며, 진행했던 고객사 및 프로젝트 사례들을 기반으로 업무방식과 직무 및 채용 관련 설명을 드릴 예정입니다.
추천인 보상금도 지급하고 있으니 네트워킹하러 편히 들러주세요!
19:00 - 19:20 Martinee Marketing Intelligence 2024 | 이선규 Martinee CEO
19:20 - 19:40 About Martinee Growth Team | 이재철 Martinee Growth Lead
19:40 - 19:50 사전 QnA (현장질문포함)
19:50 - 21:00 Networking
*주차권 제공 가능하며 리셉션 데스크 문의바랍니다.
*네트워킹 시간에 참석자분들께 간단한 음식이 제공됩니다.
*문의사항은 mkt@martinee.io 로 문의바랍니다.
September 30, 2024
행사명 : 데이터 기반 고객 여정 설계를 위한 CRM과 PA 연계 전략 세미나
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 9월 25일 수요일 오후 4시
비즈니스를 성장시키기 위해 제품/서비스 분석이 중요해진 만큼 마테크 솔루션 도입을 고민하는 상황이 많아졌는데요.
각 솔루션 기능을 효과적으로 잘 활용하는 과정에 대한 어려움을 해소하고자 이번 세미나에서는 PA 솔루션 Amplitude와 CRM 솔루션 OneSignal을 어떻게 활용하면 좋을지와 두 솔루션의 연계 활용에 대해 설명해드렸습니다.
마티니의 Amplitude 활용 사례는 MGS 2024에서 버거킹 사례로 설명드렸었는데요. 이번엔 웍스아웃과 오늘의 집 사례로 Amplitude를 효과적으로 활용하는 노하우를 공유해드렸습니다.
웍스아웃 케이스에서 가장 주의 깊게 살펴볼 점은 라플 이벤트 응모유저와 일반유저의 차이를 분석하는 점입니다.
Amplitude 유저 세그먼트와 클러스터링 맵을 통해 차이점을 명확하게 분석하여 그룹을 나누고 그룹 별로 개인화된 메시지와 랜딩 페이지를 적용하여 구매 전환을 높일 수 있습니다.
오늘의 집 케이스는 카테고리별 연관성을 기반으로 교차 구매 분석을 진행했는데요. 사용자의 로그 데이터 분석을 통해 장바구니 상품 간 연관성을 파악하고 연관성 높은 상품을 추천하는 방법으로 크로스 셀링과 CRM 재구매 주기를 단축시킬 수 있습니다.
CRM 솔루션 중 하나인 원시그널을 성공적으로, 잘 활용한 기업은 어디일까요? 원시그널을 활용하여 두 달만에 유저 인게이지먼트 16% 증가를 이뤄낸 아이웨어 판매 기업 Zenni 입니다.
Zenni는 세그멘테이션 없이 전체 유저 대상 메시지만 전달하다가 원시그널로 상세한 세그먼트를 트리거로 설정하여 블랙 프라이데이 프로모션 개인화 메시지를 자동화하는 세밀한 CRM 캠페인을 진행할 수 있었습니다.
웹 기반 사용자 데이터를 통해 앱 참여 비중이 높은 점을 확인하여 멀티 채널을 활용한 터치포인트를 통해 유저들에게 연결된 메시징 경험을 제공할 수 있었습니다.
CRM과 PA의 연계는 크게 2가지로 나눌 수 있습니다.
PA to CRM에는 재구매주기를 분석 활용, 코호트 싱크를 통한 분석 대상 활용, IAM을 트리거할 시점 찾기 등으로 연계 활용이 가능한데요. 구매시점 이후 크로스 세일을 유도하거나 최근 활동 유저에 따른 프로모션, 이탈방지 캠페인 등으로 연계 활용이 가능합니다. 유저 데이터로 코호트를 생성하여 그룹별로 나누고 최적의 IAM 트리거 시점을 찾아 노출시킬 수 있습니다.
CRM to PA는 CRM 솔루션을 통해 진행한 캠페인 및 실험의 성과를 디테일하게 분석하는 연계 활용법입니다. CRM 메시지 수신 전후 임팩트를 분석하거나 수신자와 미수신자의 리텐션, 전환율을 비교하는 방법을 설명해드렸습니다.
정확한 분석을 기반으로 섬세한 CRM을 해야 하는 만큼 CRM과 PA 연계가 어려우시다면 마티니가 함께 하겠습니다.
September 27, 2024
엑셀과 스프레드시트를 어느정도 다루시던 분들은 조건부 서식에 어느정도 익숙하실 겁니다.
조건부 서식은 데이터를 보다 효과적으로 표현하고 분석하는 강력한 기능입니다. 이는 특정 조건에 따라 셀의 모양(글자 색상, 셀 색상)을 자동으로 변경하여 중요한 정보를 시각적으로 돋보이게 만드는 기능입니다.
위의 이미지 예시를 보면 더 쉽게 이해할 수 있습니다. 왼쪽은 아무런 설정을 하지 않은 차트라면 오른쪽은 숫자의 백분위수를 기준으로 색상을 표현하였습니다. 오른쪽의 표가 일자별 노출수의 차이를 훨씬 쉽게 이해할 수 있습니다.
조건부 서식의 가장 큰 특징은 데이터에 기반한 동적인 시각화입니다. 사용자가 정의한 규칙에 따라 데이터가 변경될 때마다 서식도 자동으로 업데이트됩니다. 이는 단순히 정적인 색상이나 서식을 적용하는 것과는 다르게, 항상 최신 데이터를 반영한 시각적 표현을 제공합니다.
루커스튜디오와 같이 실시간으로 변하는 데이터 시각화 솔루션에서는 필수적으로 활용하면 좋을 기능입니다.
루커스튜디오에도 이러한 조건부 서식이 있으며 다른 엑셀과 Tableau와 같은 BI와 유사한 기능을 사용할 수 있습니다.
기본적으로 'Tablea' 차트와 'Score' 차트에서 활용가능합니다.
단색과 색상스케일에 따라 구분할 수 있습니다. KPI 달성이나 임계값 달성에 대한 강조를 원한다면 단색 유형이 유용합니다. 반면에 데이터의 양이 많고 데이터간 상대적 차이가 중요하다면 색상 스케일이 유용합니다.
규칙별로 하나의 조건만 가능하며 조건 형식은 셀 또는 전체 행에 적용할 수 있습니다.
September 24, 2024
대부분의 비즈니스 문제는 두 가지 이상의 데이터 소스들을 결합하여 바라봐야 의미 있는 인사이트를 도출 할 수 있습니다. 광고데이터와 성과데이터, 매출데이터와 쿠폰데이터, 사용자데이터와 행동데이터 등과 같은 여러 데이터 조합들이 존재합니다.
루커 스튜디오의 기능 중 하나인 데이터 혼합은 두 가지 이상의 데이터간 결합을 제공하는 기능으로 데이터 시각화 및 분석을 더욱 풍부하게 만들어줍니다.
이러한 데이터 혼합 방식은 루커 스튜디오만의 방식은 아닙니다. 이미 데이터를 처리하는 데이터베이스 분야에서는 널리 사용 되고 있습니다.
이번 시간에는 루커 스튜디오 데이터 혼합 기능에 대해 배워보고 루커 스튜디오의 대시보드를 더 깊이 있게 만들어봅시다.
데이터 혼합 방식을 처음 접한 분들은 개념이 생소할 수 있습니다. 뿐만 아니라 이미 SQL 등을 공부하면서 혼합 방식을 알고 계셨던 분들도 혼합은 헷갈리는 개념입니다. 먼저 루커 대시보드를 가지고 혼합에 대한 개념을 가볍게 살펴보도록 하겠습니다.
루커 스튜디오가 제공하는 5가지 조인방식을 동일한 데이터를 가지고 혼합하였을 경우 혼합된 최종 결과 데이터가 어떻게 구성되는지 시각적으로 본다면 이해가 좀 더 편할 것입니다. 아래의 이미지에 각 혼합 방식에 따른 결과 테이블을 살펴보실 수 있습니다.
먼저, 루커 스튜디오 데이터 혼합에 대한 기본적인 내용을 알아보겠습니다. 데이터 혼합은 최대 5개의 데이터 소스를 조합하여 차트를 생성하는 기능을 제공합니다. 이를 통해 서로 다른 데이터 소스 간 측정항목과 측정기준을 조합한 새로운 차트를 만들 수 있습니다. 데이터 혼합을 통해 다양한 데이터 소스의 구성을 효과적으로 활용할 수 있습니다.
1) 기본 : 리소스 → 혼합 소스 관리 클릭 후 데이터 혼합
2) 설정탭 이용 : 설정탭 내 데이터 소스 → 데이터 혼합 클릭
3) 차트 이용 : 두 개 이상의 차트를 선택하고 데이터 혼합 생성
혼합 데이터는 루커 스튜디오의 데이터 혼합 부분에서 새롭게 만들거나 업데이트를 합니다. 해당 화면과 데이터 혼합에 대한 기본적인 구성을 살펴봅시다.
왼쪽 조인 유형은 가장 기본적인 조인 유형입니다. 왼쪽 테이블을 기준으로 모든 행을 반환하고 오른쪽 테이블은 왼쪽 테이블 조인 키값과 일치하는 행만 반환합니다.
ㅤ
오른쪽 테이블에 존재하지 않거나 누락된 값은 최종 혼합 데이터에서 빈칸 혹은 null 값으로 표현됩니다.
라이트 아우터 조인 유형은 왼쪽 조인과 반대로 오른쪽 테이블을 기준으로 왼쪽 테이블을 모두 반환합니다. 테이블이 반대일 뿐 왼쪽 조인과 동일한 원리 입니다.
활용
2개의 보완적인 데이터 소스로 하나의 데이터 소스를 만드는 경우에 활용 가능합니다. 예를 들어 아래와 같이 매출 데이터 소스를 확장하기 위해 한쪽에는 유저 소스를 레프트 조인으로(키값은 유저 ID), 다른 한쪽에는 제품 정보 소스(키값은 판매 상품)를 넣어서 매출 데이터 분석을 더욱 풍부하게 만들 수 있습니다.
ㅤ
ㅤ
내부 조인은 두 테이블 조인 조건 모두에서 일치하는 행만 반환합니다. 각 데이터 세트의 다른 모든 행은 제거됩니다.
두 데이터 소스 간 중복에 관련한 분석을 하는 경우 많이 사용합니다. 또한 동적 데이터로 데이터 세트를 필터링하는 쉬운 방법입니다.
ㅤ
활용
ㅤ
ㅤ
외부 조인은 조인 조건이 충족되지 않더라도 두 테이블의 모든 행을 반환합니다.
활용
데이터베이스(1st party data)와 GA4(3rd party data)를 연결하며 데이터베이스에서 삭제된 데이터가 GA4에서 확인 가능하며 GA4에서 추적되지 않은 값이 데이터베이스에서 확인 가능합니다. 이처럼 양쪽의 환경을 모두 고려해야 하면서 서로의 데이터가 모두 필요한 경우 사용합니다.
ㅤ
ㅤ
교차 조인은 모든 테이블 행의 데카르트 곱(두 소스의 모든 구성요소의 순서 쌍)을 반환합니다.
즉, 왼쪽 데이터 세트의 모든 행은 반복을 통해 오른쪽 데이터 세트의 모든 행과 곱해져서 데이터를 반환합니다.
이는 조인 키가 필요하지 않은 유일한 조인 유형입니다.
ㅤ
활용
데이터의 각 행 별 조인이 필요한 경우에 사용합니다.
데이터 혼합의 조인 조건을 잘 활용한다면 분석을 더욱 풍부하게 만들어주는 게임 체인저가 될 수 있습니다.
이러한 기능을 활용하기 위해서는 처음에는 까다로울 수 있지만 연습해서 여러분들 것으로 만든다면 멋진 대시보드를 만드시는데 도움이 되실 겁니다.
September 20, 2024
데이터마케팅이란 [데이터]를 활용하여 마케팅한다는 뜻으로 데이터드리븐마케팅(Data-driven Marketing)으로도 불릴 수 있습니다.
데이터마케팅과 데이터드리븐마케팅의 차이는 미미하나, 데이터마케팅은 데이터를 [활용] 하나 데이터 드리븐 마케팅은 데이터를 [기반]으로 하기에 후자에서 데이터의 중요성이 좀 더 강조된다고 볼 수 있습니다.
데이터마케팅을 위해서 필수 조건은 (당연하게도) 데이터 분석입니다. 결괏값을 측정하여 데이터를 잘 쌓아두고, 보유한 데이터를 가공하여 상황을 해석하고 문제나 개선점에 대한 인사이트를 도출하는 것이 기본적인 데이터 마케팅의 프로세스라고 할 수 있습니다.
그로스 조직(=그로스팀)은 기본적으로 데이터 드리븐 마케팅을 하기에, 프로세스가 같습니다.
데이터를 기반으로 가설을 세우고, 실험을 바탕으로 검증하고, 배움을 축적하는 과정을 빠르게 반복합니다. (*출처: 양승화 님의 그로스해킹)
마티니에서 진행한 컨설팅 프로젝트였던, 패션 커머스를 기준으로 데이터마케팅의 사례를 보겠습니다.
커머스 내에서도 여러 안건의 데이터 분석이 있는데요. 1. 에디토리얼(=콘텐츠), 2. 프로모션 간의 비교 (미드세일 vs 시즌오프세일), 3. 주요 대시보드 (KPI, AARRR) 4. 특정 프로모션 (블랙프라이데이) 등입니다.
블랙프라이데이 프로모션을 세부 사례로 앰플리튜드(Amplitude)를 활용했던 분석을 예시로 들어보겠습니다.
*앰플리튜드는 SaaS(Software as a Service: 클라우드 기반의 소프트웨어 제공 모델) 솔루션으로 웹/앱 서비스 내의 사용자 행동 분석을 할 수 있는 프로덕트 애널리틱스(Product Analytics)입니다.
왜 프로모션 데이터 분석을 해야 할까요? 그 배경부터 먼저 짚고 넘어갑시다.
다양한 형태로 스스로에게 질문을 해봅니다.
Q. 프로모션을 기획하고 운영한 후 가장 궁금한 것은?
Q. 프로모션을 운영한 이유는 무엇일까요?
여러 가설을 세워봅니다.
이렇게 물어보면, 보통은 '셋 다'라고 대답하는 경우가 많은데요. 충분히 이해는 하지만(^^...!) 우선순위는 정해야 합니다. 대개 우선순위는 [매출]이기에, 매출 관련 분석을 먼저 진행합니다.
매출의 기본적인 구성 요소를 먼저 파악합니다.
*건단가와 객단가
건단가와 객단가는 혼용되어 쓰이기도 하는데요. 주문[건]의 건, 고[객]의 [객]을 생각하시면 됩니다.
즉 어제 제가 배민에서 점심 주문 건으로 1.5만 원을 쓰고 저녁 주문 건으로 2.5만 원을 썼다면 일 기준 제 건단가는 [1.5만 원] / [2.5만 원] 두 건일 것이고 제 객단가는 [1.5만 원]+[2.5만 원]의 4만 원이 될 수도 있습니다.
*물론 건단가와 객단가는 내부적으로 정의하기 마련입니다! 일간 건단가를 평균으로 낼 수도 있으니까요.
이에 따라 앰플리튜드(Amplitude)에서 매출, 주문수/건단가, 구매자수/객단가로 그래프를 구성합니다. 우선 매출로 전체적인 추이를 보고 주문수/건단가, 구매자수/객단가를 개별로 쪼개보는 것이죠.
해당 프로모션에서는 객단가와 건단가가 유사한 추이를 보이기에 특이 사항이 없다고 판단되었지만, 가끔 특정 프로모션에서 객단가와 건단가의 차이가 크게 발생하는 경우도 있습니다. (리셀러의 등장?!)
이외 위 그래프에서 두 개의 선이 있는데요. 데이터를 볼 때의 꼭 필요한 [비교 기준]입니다. 비교 기준은 사용자 특성이 될 수도, 행동이 될 수도 있지만 [기간]을 가장 기본적으로 고려합니다.
*비교 기준: 기간(일간, 주간, 월간, 분기, 반기, 연간… 시즌성 고려!
블랙프라이데이 프로모션의 분석이라면 전년도 11월과 비교하는 것 vs 전월인 10월과 비교하는 것 - 어떤 것이 더 합리적일까요? 당연히 전년도일 것입니다.
전월 10월과 당월 11월의 할인율, 마케팅 수준 등이 다를 테니까요. 물론 전년 대비 회원수도 브랜드수도 많아졌고 등의 변동 요인들이 많아 YoY만 비교하는 것이 의미가 없다고 판단된다면 결국 전년도(YoY)/전월(MoM)/전주(WoW) 등 비교 대상들이 많아질 수 있습니다.
현대의 직장인이라면 대개 모든 업무의 결과를 [숫자]로 보긴 합니다. 그렇다면 그냥 숫자를 확인하는 것과 데이터 분석의 가장 큰 차이점은 무엇일까요?
예를 들어 2024년 7월 A 커머스의 구매 전환율 (메인 페이지 조회 > 결제 완료)이 10%라고 했을 때, 어떤 해석을 할 수 있을까요?
전월 대비 높아졌다/낮아졌다, 전년 대비 높아졌다/낮아졌다의 판단을 위해서는 전월 데이터, 전년도 데이터가 필요합니다.
전년, 전월, 전주의 데이터를 보며 추이를 확인했을 때 눈에 띄게 높거나/낮은, 혹은 변동이 생기는 시점을 찾아내어 그 배경이 무엇이었는지 파악하는 것이 필요합니다.
혹은 유사한 프로모션이 진행되었던 시기와 비교하여 구매전환율이나, 구매수, 유입수, 가입수 등의 주요 지표에서 차이가 있었는지를 파악해 보는 것도 좋습니다.
프로모션 vs 프로모션 간의 비교 외에도 uiux를 개선하거나 특정 기능을 배포했을 때 그 시점 이후의 변화가 있는지를 확인할 수 있습니다.
매출을 구매수와 건단가, 구매자수와 객단가로 나눠 전반적인 추이를 파악한 후 세부 분석을 진행합니다.
매출은 결국 [사용자]가 [상품]을 [구매]하여 발생하는 결괏값입니다. 이에 따라 [사용자]와 [상품]의 측면에서도 분석을 진행합니다.
: 카테고리별, 브랜드별, 상품별 매출 추이
프로모션의 매출을 브랜드, 카테고리 등으로 나눠서 확인해 봅니다.
더 개별적으로는 브랜드를 기준으로 매출과 월별 성장률 등을 확인하며 주요 브랜드를 도출하기도 합니다.
프로모션을 진행하고 쌓인 데이터를 분석하고 회고하고 다음 프로모션에 적용하는 것. 그것이 프로모션 측면에서 데이터를 활용한 데이터 마케팅이라고 볼 수 있습니다.
이외 데이터마케팅은 어떤 부문에도 동일하게 적용됩니다. 정량적인 수치로 표현되는 데이터를 쌓고, 데이터를 여러 측면에서 분석하고, 다음 유사 업무 시 배운 점을 적용하고 또 실험하는 것입니다.
September 13, 2024
행사명 : 마티니 AP 본부 채용설명회
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 9월 26일 목요일 오후 7시 ~ 9시
대상:
2024년 9월 26일 목요일 오후 7시 Marketing Intelligence People, 마티니와 마티니 AP 본부의 퍼포먼스 마케팅을 여러분들께 소개합니다.
AP 본부에서 진행했던 고객사 및 프로젝트 사례들을 기반으로 직무 및 채용 관련 설명을 드릴 예정입니다.
마티니 근무환경과 문화, 복지도 함께 살펴보세요!
19:00 - 19:20 Martinee Marketing Intelligence 2024 | 이선규 Martinee CEO
19:20 - 19:40 About Martinee Account Planning | 김영근 Martinee Account Planning Lead
19:40 - 19:50 사전 QnA (현장질문포함)
19:50 - 20:00 Break Time
20:00 - 20:15 About Martinee Culture & Benefits | Aimed People Team
20:15 - 21:00 Networking & QnA
- 자리가 한정되어 있어 별도로 선정 안내를 드릴 예정입니다.
- 주차권 제공 가능하며 리셉션 데스크 문의바랍니다.
- 참석자분들에게 간단한 음식이 제공됩니다.
- 문의사항은 mkt@martinee.io 로 문의바랍니다.
September 12, 2024
MRR 이란?
Monthly Recurring Revenue로 월간 반복 매출 구독형 서비스의 경우 핵심 지표로 활용됩니다.
요즘은 누구나 한 번 쯤은 구독형 서비스를 결제해본 경험이 있을텐데 구독 비즈니스는 사용자가 카드를 등록하면 자동으로 월마다 반복적으로 자동결제가 됩니다. (유튜브 프리미엄 구독, 넷플릭스 등)
MRR 산출 공식은 다음과 같습니다.
예를 들면, 유튜브 프리미엄 월 구독 비용이 10,000원이고 이용자가 10명이라면 MRR 은 100,000원이 되는 겁니다.
그런데 MRR이 100,000원 입니다. 에서 끝나면 안되겠죠?
MRR이 어떻게 변화했는지를 분석하는 것도 굉장히 중요합니다.
MRR 지표를 쪼개보면 아래와 같습니다.
그러면 이 지표를 가지고 우리는 New MRR을 구할 수 있습니다.
실무하면서 MRR calculation 하는데 고생 고생을 했는데 이 방법으로 도움을 받을 수 있는 누군가를 위해 공유합니다.
우선 방법은 DB에 적재된 결제 데이터와 구글 스프레드 시트에서 세금계산서로 처리되는 고객 결제 내역을 바탕으로 Rawdata를 준비하고 파이썬을 활용해서 frequency(월결제, 연결제)를 flatten 해주고 이를 Looker Studio로 시각화해줍니다.
1. DB에서 데이터 불러오기
2. 구글 스프레드시트에서 데이터 불러오기
3. 파이썬으로 데이터 클렌징하기
4. 클렌징한 DB, 스프레드시트 데이터 합치기
5. 클렌징 결과 시각화를 위해 구글 스프레드시트로 보내기
6. Looker Studio로 시각화 하기
아래는 실제 활용했던 MRR 대시보드 입니다.
첫 번째 대시보드는 월매출과, MRR 지표 현황을 살펴보고 고객사별 월간 구독 현황을 확인 해볼 수 있고 ARR, 이번달 예상 매출도 확인 할 수 있게 구성했었습니다.
두 번째 대시보드는 위에서 언급한 대로 MRR 지표를 쪼개서 모니터링하는 대시보드입니다.
이를 통해 MRR 상승하는데 어떤 지표 때문에 상승했는지 한눈에 볼 수 있습니다. 또한 MRR 성장추이도 함께 볼 수 있도록 구성되었습니다. 이제 이 대시보드를 통해서 전사가 우리 서비스의 MRR 현황을 볼 수 있고 이탈한 유저수가 특히 많았던 월에는 고객 인터뷰를 진행해보거나 해당 유저들의 특징을 파악해보면 어떤 지점에서 불편함을 느꼈는지 페인 포인트는 무엇이었는지 원인을 파악하고 제품 개선에 반영해볼 수 있겠죠?
DB에서 결제 데이터를 위의 컬럼만 파이썬 SQLAlchemy 를 활용해서 데이터를 불러옵니다.
SELECT
user_id,
company_name,
sales,
pay_datetime_id,
freq,
user_status
FROM
(SELECT tmp2.user_id,
tmp2.company_name,
tmp2.id,
tmp1.sales,
date_format(tmp1.auth_date, '%Y-%m-01') auth_date,
tmp1.subscription_id,
tmp1.user_status,
tmp1.card_updated_at
FROM
(SELECT B.user_id,
A.sales,
A.auth_date,
A.subscription_id,
A.user_status,
A.card_updated_at
FROM
(SELECT st0.*,
st1.user_status,
st1.card_updated_at
FROM
-- billing_payment_history 테이블에서 조건에 맞는 데이터 가져오기
(SELECT billing_id,
subscription_id,
auth_date,
IF(cancelled_at IS NULL ,amount, IF (amount <= cancellation_cancel_amount,0,cancellation_remain_amt)) AS sales
FROM nicepay_billing_payment_history
) st0
left join
-- nicepay_card_info 테이블에서 가장 최근의 카드 정보(created_at이 최대인)를 가져오며, user_status를 is_deleted와 is_active 값에 따라 ‘churned_user’ 또는 ‘active_user’로 설정
(select t1.billing_id,
t1.created_at,
t1.is_deleted,
t1.is_active,
t1.created_at card_updated_at,
(case when t1.is_deleted = 1 and t1.is_active = 0 then 'churned_user' else 'active_user' END) user_status
from nicepay_card_info t1
inner join (select billing_id,
max(created_at) max_date
from nicepay_card_info
group by 1) t2
on t1.billing_id = t2.billing_id and t1.created_at = t2.max_date) st1
ON (st0.billing_id = st1.billing_id)) A
LEFT OUTER JOIN
(SELECT billing_id,
user_id
FROM nicepay_billing_info) B
ON (A.billing_id = B.billing_id)) tmp1
INNER JOIN (SELECT user_id,
company_name,
id
FROM user
) tmp2
ON (tmp1.user_id = tmp2.user_id)) tmp3
inner join
(select seq,
freq,
date_format(plan_start_datetime_id, '%Y-%m-01') subscription_plan_start_datetime_id
from subscription) tmp4
ON (tmp3.subscription_id = tmp4.seq)
where sales > 0;
먼저 계산을 위해 필요한 데이터를 DB에서 추출해주고 flatten을 해줄껍니다.
flatten이 뭐냐 뜻 그대로 평탄화한다는 의미입니다. 예를들어 고객이 연간 결제를 1,200,000원을 했다고 하면 월별 결제액은 12개월로 나눠서 월별로 데이터를 평탄화 해주는 과정이라고 보시면 됩니다.
#expand the yearly records
mrr_base = mrr_df.loc[np.repeat(mrr_df.index, mrr_df['freq'].map({"years":12,"months": 1}))]
mrr_base.loc[mrr_base["freq"] == "years", "sales"] /= 12
mrr_base.loc[mrr_base["freq"] == "years", "pay_datetime_id"] += \
mrr_base.groupby(["user_id", "freq"]).cumcount().loc[mrr_base["freq"] == "years"]\
.map(lambda i: pd.DateOffset(months=i))
저의 경우 DB에 기록되지 않은 세금계산서 데이터를 가지고 있었는데
해당 데이터는 구글 스프레드시트에 기록하고 있으므로 구글 스프레드시트에서 데이터를 불러옵니다.
#구글 스프레드시트에서 data load하기
scope = ['https://spreadsheets.google.com/feeds',
'https://www.googleapis.com/auth/drive']
credentials = ServiceAccountCredentials.from_json_keyfile_name(
'credential 파일 경로(json파일)', scope)
gc = gspread.authorize(credentials)
spreadsheet_url = "가져올 스프레드시트 주소"
gc1 = gc.open_by_url(spreadsheet_url).worksheet('시트 이름')
#기존에 기록된 데이터 가져와서 리스트 형태로 리턴
gc2 = gc1.get_all_values()
#데이터프레임으로 판다스로 가져오기
gc2 = pd.DataFrame(gc2, columns=gc2[0])
gc2 = gc2.reindex(gc2.index.drop(0))
#날짜 형식으로 변경
gc2['pay_datetime_id'] = pd.to_datetime(gc2['pay_datetime_id'])
#sales 컬럼 숫자로 변경
gc2['sales'] = gc2['sales'].astype(str).astype(int)
#expand the yearly records
gc2_base = gc2.loc[np.repeat(gc2.index, gc2['freq'].map({"years":12, "months": 1, "2years":24}))]
# compute monthly fee and join date
#years 12개월로 나누기
gc2_base.loc[gc2_base["freq"] == "years", "sales"] /= 12
gc2_base.loc[gc2_base["freq"] == "years", "pay_datetime_id"] += \
gc2_base.groupby(["user_id", "freq"]).cumcount().loc[gc2_base["freq"] == "years"] \
.map(lambda i: pd.DateOffset(months=i))
#2years 24개월로 나누기 / years 12개월로 나누기
gc2_base.loc[gc2_base["freq"] == "2years", "sales"] /= 24
gc2_base.loc[gc2_base["freq"] == "2years", "pay_datetime_id"] += \
gc2_base.groupby(["user_id", "freq"]).cumcount().loc[gc2_base["freq"] == "2years"] \
.map(lambda i: pd.DateOffset(months=i))
gc2_base_result = gc2_base[['user_id', 'company_name', 'sales', 'pay_datetime_id', 'freq']]
출처: https://botongsaram.tistory.com/entry/B2B-SaaS-MRR-계산하기 [알랭드보통사람:티스토리]
위의 과정에서 DB에서 불러온 데이터와 구글 스프레드시트의 데이터 형태를 통일 시켰습니다.
이제 Raw Data를 만들기 위해서 합쳐줍니다.
#구글시트rawdata와 DB에서 불러온 데이터의 결합
df_union= pd.concat([mrr_result, gc2_base_result])
데이터를 통합한 다음에 데이터 시각화를 위해 데이터 시각화를 위해 스프레드시트에 최종 정리된 데이터를 다시 구글 스프레드시트로 전달합니다.
# union 된 결과를 다시 구글 스프레드시트로
scope = ['https://spreadsheets.google.com/feeds',
'https://www.googleapis.com/auth/drive']
credentials = ServiceAccountCredentials.from_json_keyfile_name(
'credential 파일 경로(json)', scope)
gc = gspread.authorize(credentials)
spreadsheet_url = '스프레드시트주소
gc_mrr = gc.open_by_url(spreadsheet_url).worksheet('새로 데이터를 업로드할 시트명')
#기존에 기록되어 있던 데이터 삭제(처음 업로드할 때는 필요 없음)
gc_mrr.clear()
# 오늘 가져온 데이터 업로드
gd.set_with_dataframe(gc_mrr,merge)
위의 결과는 MRR 대시보드 예시(1)에서 활용했던 과정입니다.
다음으로 MRR detail view 에 사용될 지표를 만들 차례입니다.
# pay_datetime_id 열에서 월과 연도를 추출하여 새로운 열 생성
mrr_detail_result['month_year'] = mrr_detail_result['pay_datetime_id'].dt.to_period("M")
# max_date 컬럼 만들기
mrr_detail_result['max_date'] = pd.NaT
mrr_detail_result.head()
# user_id를 기준으로 그룹화
grouped = mrr_detail_result.groupby('user_id')
# 각 그룹에서 최대 결제일을 찾고 max_date 열에 할당
for name, group in grouped:
max_date = group['pay_datetime_id'].max()
max_index = group['pay_datetime_id'].idxmax()
mrr_detail_result.loc[group.index, 'max_date'] = max_date
# 데이터프레임을 corporate_id와 pay_datetime_id 기준으로 정렬
transactions_ver2 = mrr_detail_result.sort_values(by=['corporate_id', 'pay_datetime_id'])
# 이전 거래 금액을 저장할 새로운 열 prev_amount 추가
transactions_ver2['prev_amount'] = transactions_ver2.groupby('corporate_id')['sales'].shift(1)
# 사용자 상태를 저장할 새로운 열 user_status 추가
transactions_ver2['mrr_status'] = 'new'
# 이전 거래 금액과 동일한 금액을 가진 사용자에게 'existing' 할당
transactions_ver2.loc[transactions_ver2['sales'] == transactions_ver2['prev_amount'], 'mrr_status'] = 'existing'
# 이전 거래 금액보다 높은 금액을 가진 사용자에게 'upgrade' 할당
transactions_ver2.loc[transactions_ver2['sales'] > transactions_ver2['prev_amount'], 'mrr_status'] = 'upgrade'
# 이전 거래 금액보다 낮은 금액을 가진 사용자에게 'downgrade' 할당
transactions_ver2.loc[transactions_ver2['sales'] < transactions_ver2['prev_amount'], 'mrr_status'] = 'downgrade'
# 이전에 'churned' 상태였고 이제 새로운 거래가 있는 사용자에게 'reactivation' 할당
# 모든 고유한 corporate_id 값을 포함하는 리스트 생성
corporate_ids = transactions_ver2['corporate_id'].unique()
# 각 corporate_id에 대해 루프를 돌며 각 거래의 상태를 업데이트
for corporate_id in corporate_ids:
user_data = transactions_ver2[transactions_ver2['corporate_id'] == corporate_id]
for i in range(1, len(user_data)):
prev_month = user_data.iloc[i-1]['month_year']
curr_month = user_data.iloc[i]['month_year']
if (curr_month - prev_month).n > 1:
transactions_ver2.loc[(transactions_ver2['corporate_id'] == corporate_id) & (transactions_ver2['month_year'] == curr_month), 'mrr_status'] = 'reactivation'
# user_status가 churn_user인 사용자의 마지막 결제일에 'churn' 상태 할당
transactions_ver2.loc[(transactions_ver2['user_status'] == 'churned_user') & (transactions_ver2['pay_datetime_id'] == transactions_ver2['max_date']), 'mrr_status'] = 'churned'
transactions_ver2.head()
이제 MRR 대시보드 예시(2)에 활용된 데이터가 전처리되었고 구글 스프레드시트로 데이터를 적재해주면 됩니다.
이걸 매일 하기는 귀찮으니 Airflow DAG를 활용해서 자동화해주면 됩니다.
여기까지 MRR계산을 위해 SQL, 구글 스프레드시트, python을 활용한 과정을 소개해봤습니다.
누군가 B2B SaaS에서 MRR 계산을 위해 고군분투하고 계시다면 이 코드가 도움이 되시면 좋겠네요
추가로 초기에 대시보드 기획에 많은 참고가 되었던 Baremetrics라는 MRR 대시보드 외산 툴이 있는데 상당히 잘만들었다고 생각되는 서비스입니다.
SaaS 비즈니스를 운영하신다면 참고해보시면 좋을 서비스네요!
September 9, 2024
분석 데이터의 하위 집합입니다.
사용자, 세션, 이벤트 데이터를 분리해서 세그먼트를 정의하면 분석하고자 하는 대상을 쉽게 정의할 수 있게 만드는 기능입니다.
세그먼트를 정의하게 되면 특정 유저의 그룹 vs 나머지 유저의 특징을 비교 분석해 볼 수 있습니다.
GA4에서 세그먼트 기능을 통해 웬만한 유저들의 특징을 잡아낼 수 있습니다.
그런데 GA4가 어떻게 유저들의 행동 데이터를 수집하고 활용하는지 제대로 알지 못하면 활용하기 힘들겠죠?
이번 글에서는 큰 틀에서 GA4가 어떤 원리로 조건이 설정되는지 알아보려고 합니다.
세그먼트 생성화면을 들여다보면 꽤 많은 조건들을 설정할 수 있는 기능들이 많습니다.
일단 크게 3가지 유형의 세그먼트가 있습니다. (아래 유형에 대한 이해를 잘하셔야 합니다.)
세그먼트 유형 선택은 세그먼트를 조건에 해당하는 결과와 관련이 있는 거라고 생각하시면 이해하시기 쉬울 겁니다.
특히! 각 유형별로 소스 / 매체 선택할 때 주의할 점을 꼭! 숙지하시길 바랍니다!
이렇게 정의는 그럭저럭 이해는 할 수 있지만 역시 예시를 통해 어떻게 데이터가 선택되는지 알아보겠습니다.
특정 유저가 2개의 세션 안에서 몇 가지 이벤트를 발생시켰다고 가정해 보겠습니다.
1. 사용자 세그먼트 예시
사용자 세그먼트 기준으로 구매한 유저를 세그먼트를 만들면 어떻게 데이터가 선택될까요?
총 7개의 이벤트가 모두 선택됩니다. 사용자 기준이니까 조회한 날짜에 있는 이벤트가 모두 포함되기 때문입니다.
2. 세션 세그먼트 예시
최소 한 개의 구매 이벤트가 발생한 모든 세션의 데이터기 때문에 이 기준으로 충족되는 데이터는 purchase(구매) 이벤트가 발생한 session - 2 만 선택됩니다( session - 1 에는 구매 이벤트가 없음)
3. 이벤트 세그먼트 예시
이벤트 기준이면 기준에 맞는 이벤트만 선택한다는 말이기 때문에 session - 2에서 발생한 purchase 이벤트만!! 선택됩니다. 다른 이벤트는 선택 안됩니다!
여기서는 어떤 조건의 유저를 선택할지 셋팅하는 옵션을 선택할 수 있습니다.
여기서 AND, OR 조건을 선택할 수 있는데 회원가입과 구매 이벤트를 발생시킨 유저 선택해 보겠습니다.
그런데 하단에 보면 포함할 조건 그룹 추가라는 버튼이 있습니다.
동일한 방식으로 회원가입과 구매를 한 조건을 설정하면 이렇게 할 수 있죠
즉 하나의 조건 그룹에 회원가입 이벤트와 구매 이벤트를 선택한 것이고 나머지 하나는 두 개의 조건 그룹에 회원가입 이벤트와 구매 이벤트가 각각 설정을 했습니다.
첫 번째 방식과 차이점은 뭘까요? 동일한 결과가 나올까요? 결과는 동일합니다.
???
이게 무슨 말이냐면 그룹 간 영역에서 오른쪽 상단에 보면 사람모양의 드롭다운 버튼이 있습니다.
이걸 클릭하면 조건 범위를 지정할 수 있습니다.
세그먼트 설정할 때랑 동일한 방식이죠? 사용자, 세션, 이벤트 단위로 조건설정이 가능합니다.
세션 및 이벤트 세그먼트에는 조건 지정 범위에 대한 옵션이 더 적습니다. 아래 표는 사용할 수 있는 세그먼트 유형별 조건 범위 간 조합입니다.
다시 예시를 들어볼게요
GA4에서 첫 구매 유저를 따로 이벤트를 개발하지 않으면 특정하기 힘든데 회원가입 후 첫 구매 유저를 세그먼트로 한 번 만들어 보겠습니다.
해당 유저들을 특정하기 위한 필요한 이벤트는 first_visit(첫 방문)과 purchase 이벤트겠죠?
첫 구매 유저를 특정한다고 해도 이를 어떻게 정의하느냐에 따라 결과는 달라집니다! (주의!!)
유저의 행동은 정말 엄청나게 많은 경우의 수로 발생을 하죠.
A유저 : 구매 의사 결정이 빠른 A유저는 동일한 세션 시간 내에서 구매
B유저 : 구매 의사 결정이 느린 B유저는 어제 상품을 처음 둘러보고 내일 구매
이 예시처럼 첫 구매를 동일한 세션 시간내 첫 구매를 한 유저를 특정할 것인지, 세션에 상관없이 첫 구매 유저를 식별한 것인지 정의하기 나름입니다.
첫 구매 유저 세그먼트를 만든다면 어떤 조건을 설정해야 될까요?
사용자 세그먼트를 기준으로 세그먼트를 설정하면 유저의 조건에 해당하지 않는 방문데이터도 포함되게 됩니다.
그러니까 첫 방문 이후 첫 세션에 구매를 하지 않아도 구매를 특정시킨 뒤에 제외 조건을 구매 조건을 2번 이상으로 설정하여 첫 구매한 유저를 식별할 수 있습니다.
그런데 first_visit, 첫 구매 사용자의 방문 데이터만 확인하고자 한다면 사용자 세그먼트가 아닌 세션 세그먼트를 기준으로 동일 세션 내의 조건 범위를 선택하여 세그먼트를 생성해야 합니다.
첫 구매 유저를 모든 세션 범위 조건으로 하여 세그먼트를 생성하고 재구매자(purchase 이벤트가 2번 이상)와 겹치는 부분이 없는지 세그먼트 중복 기능을 활용해 벤다이어그램으로 확인해 보겠습니다.
중복 없이 잘 나뉘었습니다. 이런 식으로 내가 가진 유저의 특징을 세그먼트로 만들어서 비교해 보는 과정이 굉장히 중요한 것 같습니다.
이 개념을 토대로 한 번 만들어 보시면 좋을 것 같습니다.
GA의 세그먼트는 생각보다 할 수 있는 게 많긴 합니다.
하지만 제대로 활용하기 위해서는 위에 설명한 개념들이 잘 정리가 되어 있어야 됩니다.
이번 글을 쓰면서 느낀 건 솔직히 GA4는 사실 Amplitude를 사용해 봤다면 이런게 다 있나 싶을 정도로 불편하고... 뭔가 찜찜한 느낌을 지울 수 없었습니다.
이번 글에서 첫 구매 유저 세그먼트를 예시로 들었는데 GA4에서 First time purchases라는 측정항목이 존재하긴 하지만
이를 세그먼트로 활용은 못합니다... 약간 독립적인 측정항목 같은 느낌입니다.
Amplitude에서는 사실 아주 간단하게 첫 구매 유저를 특정할 수 있는 Historical Count 기능이 있어서.. 아쉬웠습니다.
(물론 제약 조건은 있습니다. 날짜 범위가 시작되기 전 최대 1년까지 기간만 포함됩니다. 그래도 이건 혁명적인 기능!)
본질적으로 GA의 목적은 유저 획득에 초점을 맞춰져 있다면 Amplitude는 Product Analytics 툴로 사용자 행동 분석에 초점이 맞춰져 있긴 합니다. 그래서 목적에 맞지 않아서 해당 기능 개발을 하지 않은 건가 싶기도 합니다.
당장 앰플리튜드를 도입하지 않을 거라면 속 편하게 GA4에서 First Purchase 이벤트 개발을 요청하거나 혹은 일단 소개드린 방식대로 우선 트렌드만 확인하는 용도로 세그먼트를 생성해서 데이터를 분석하시는 걸 권장드립니다.
September 9, 2024
행사명 : 데이터 기반 고객 여정 설계를 위한 CRM과 PA 연계 전략 세미나
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 9월 25일 수요일 오후 4시 ~ 6시
대상
2024년 9월 25일 수요일 오후 4시 마티니, 앰플리튜드, 원시그널이 함께하는 세미나에서각 솔루션의 활용 사례와 고객 경험을 최적화할 수 있는 PA & CRM 솔루션 연계 활용법을 알려드립니다.
이번 세미나에서 PA 및 CRM 솔루션 활용 사례를 확인하고 비즈니스에 직접 적용할 수 있는 과정들을 살펴보세요.
16:05 ~ 16:30
[앰플리튜드 세션] 이재철 연사
앰플리튜드 국내 활용사례
16:30 ~ 16:55
[원시그널 세션] 서영진 연사
원시그널 글로벌 활용사례
16:55 ~ 17:20
[마티니 세션] 이건희 연사
CRM 자동화 & PA 솔루션 시너지 발휘하기
세션 이후에는 자유로운 네트워킹과 QnA를 할 수 있는 시간이 마련되어있어 솔루션 연계 활용 및 PA와 CRM 솔루션 도입 관련해서 고민을 나누고 소통할 수 있습니다.
- 신청 시 회사 이메일이 아닐 경우 등록이 제한될 수 있습니다.
- 자리가 한정되어 있어 별도로 선정 안내를 드릴 예정입니다.
- 주차권 제공 가능하며 리셉션 데스크 문의바랍니다.
- 참석자분들에게 간단한 음식이 제공됩니다.
- 문의사항은 mkt@martinee.io 로 문의바랍니다.
September 6, 2024
전 보통 평일 아침에 운동을 하는데, 끝나고 나면 다른 멤버분들과 이야기를 나누게 됩니다. 아무래도 출근 시간이다보니 스몰톡이 직업 쪽으로 흘러갔습니다. [마케팅]을 하고 계신다고 하시더라고요.
반가운 마음에 전 그로스마케팅을 한다 말해더니 모르는 눈치십니다. [퍼포먼스마케팅]을 하시는 거냐 물었더니 그렇다고 합니다. 어떤 매체를 주로 운영하시냐 했더니 말끝을 흐리십니다.
얘기해보니 그 분의 업무는 <인스타그램 계정 육성> 이었습니다. 특정 부문의 콘텐츠만 게재하는 다수의 계정을 생성해서 ~N만의 팔로워를 가진 계정으로 키우고 광고를 받으며 수익화를 하는죠. 즉 [SNS마케팅]이자 [콘텐츠마케팅]이자 [인플루언서 마케팅]입니다. 저 또한 헷갈렸습니다. 이 또한 퍼포먼스 마케팅일까...?
퍼포먼스는 마케팅은 퍼포먼스(Performance)의 실적, 성과라는 뜻에서 파생됩니다. 즉 퍼포먼스 마케팅이란 성과를 확인할 수 있는 마케팅입니다. 성과란 일의 결과를 뜻하고요.
시험을 보고 성적표를 받듯, 마케팅을 하고 이 일에 대한 성적표를 만들 수 있는 것이 퍼포먼스 마케팅입니다. 어떤 요소에서 얼마나 잘했는지에 대해서 수치 기반의 정량적인 기준으로 평가할 수 있는 거죠.
전통적인 마케팅은 주로 ATL (Above The Line)에 속하는 전통적인 매체를 통한 것을 말합니다. TV, 라디오, 옥외 광고, 신문 등이 있겠죠.
이러한 매체들은 몇 명에게 노출되었는지까지는 대략 추산할 수 있지만 실제로 그 중에 몇 명이 어느 정도로 관심을 보였는지를 알 수 없습니다.
즉 TV가 틀어져있는 가구수는 셀 수 있겠지만, 그 가구 내에서 몇 명의 인원이 영상을 보고 있었는지, 다른 일을 하면서 보고 있었는지 아니면 TV 영상에만 집중하고 있었는지, 그래서 TV 광고에 나온 상품을 인지하게 되었는지 상호 작용이 불가능하므로 알기 어렵습니다.
라디오나 옥외광고도 마찬가지로, 라디오가 청취수는 알겠으나 청취수는 청취자수와 일치하지 않고 옥외광고의 경우 그 앞을 지나간 사람들을 추산할 수 있을 뿐입니다. 그러므로 전통적인 마케팅에서의 ATL 매체는 성과를 정확하게 측정하기가 어렵습니다.
그래서 비즈니스에서는 ROI를 묻습니다. 투자금 대비 이익률이죠. (이익-마케팅 비용)/(마케팅 비용)의 수식으로 비용 대비 매출이 아닌 [이익]의 수준을 봅니다.
마케팅에서는 주로 ROAS를 봅니다. (마케팅에 의한 매출)/(마케팅 비용)의 수식입니다. 여기서 주목할 점은 <마케팅에 의한 매출>입니다.
마케팅에 의한 매출 = 마케팅에 의한 성과, 이를 알고 싶었기 때문에 성과(매출)을 측정할 수 있는 퍼포먼스 마케팅이 중요해졌다고 볼 수 있습니다.
특정 브랜드에서 마케팅을 운영한다고 할 때, 사용자는 신규와 기존으로 나눌 수 있습니다. 신규는 우리를 모르는 사람들, 기존은 우리를 아는 사람들로 정의할 수 있겠으나 [안다/모른다]의 상태를 명확하게 구별해줄 수 있는 변인이 필요합니다.
대개 이 상태를 [가입] 행동으로 구분합니다. 즉 이미 우리 브랜드의 회원인 사용자는 기존, 비회원인 사용자는 신규가 되는 것이죠. 이와 같이 신규 사용자를 대상으로 하는 마케팅을 사용자 획득: UA (User Acquisition) 이라고 합니다.
인지도 증대 및 관심 유도에 유효한 [배너 광고]
배너 광고 매체들은 마케터가 아니어도 익숙한 이름들입니다. 말 그대로 '배너'가 노출되어야 하기 때문에 많은 수의 사용자를 확보하고 있는 플랫폼이어야 경쟁력이 있기 때문이죠.
의사결정 및 구매 전환에 유효한 [검색 광고]
A/B 테스트는 원칙적으로 대조군(Control Group)과 실험군(Experimental Group)을 나누어 다른 모든 환경이 동일하다고 할 때, 한 가지의 변인을 다르게 하여 그 변인의 영향도를 실험하는 것입니다.
광고 집행 시, 모든 외부 요인을 통제할 수 없기 때문에 그 부분을 감안하고 광고 셋팅(타겟팅 등)이나 소재를 A/B 테스트 해볼 수 있습니다. 특정 상품의 경우 소재에서 어떤 내용을 강조할지가 주요 테스트 내용이 됩니다. 1. 개발스토리 2. 리뷰 3. USP 4. 가격 등 강조할 수 있을만한 것들을 제일 메인 요소로 활용해보는 것입니다. A/B 테스트는 매우 큰 개념으로 마케팅에서도 매체, 세팅/타겟팅, 소재 기획/제작 등에서 다양하게 적용될 수 있습니다.
1. 인지도 증대 (Awareness)
'트래픽' 캠페인으로도 불립니다. 불특정 다수(오픈타겟, 논타겟)에게 최대한 많은 도달/노출을 이루어 제품의 인지도 향상과 클릭에 의한 유입, 트래픽을 의도합니다.
2. 관심 유도 (Interest)
타겟 세팅 시 관심사를 설정하여, 다른 행동으로 특정 관심사를 가진 것으로 추론되는 사용자들에게 소재를 노출할 수 있습니다. 혹은 관련도가 높은 웹사이트로 노출 위치를 설정할 수 있습니다.
3. 의사 결정 및 구매 전환 (Decision & Action)
구매 의도 있는 상태에서 특정 키워드를 검색했을 시 광고가 노출되거나, 이전에 방문했던 사용자를 대상으로 재방문 등을 유도할 수 있습니다.
배너 광고든 검색 광고든 각 매체를 통해서 광고가 운영이 되면 관심을 가진 사람들이 클릭하여 설정해둔 페이지로 유입됩니다.
이 때, 페이지에 유입된 사용자가 100명이라고 할 때 (이 100명을 정확하게 구분하는 것도 꽤 어려운 일입니다...) 100명이 [배너 광고]를 보고 왔을지 [검색 광고]를 보고 왔을지 [배너 광고]도 보고 [검색 광고]도 보고 왔을지, [배너 광고]만 보고 10일 후에 페이지 주소를 입력해서 들어왔을지...
어떤 채널, 어떤 매체로 들어왔을지 유입 경로를 알고 싶다면 매체에 광고를 세팅할 때 URL에 UTM이라는 변수를 붙여준 후 이를 Google Analytics로 측정해야 합니다.
유상 광고의 경우 모든 광고 매체에서 관리자(Admin) 페이지를 지원하며 성과를 측정하여 보여주는데 굳이 구글 애널리틱스를 봐야하는 이유가 뭘까요?
자사몰에서의 단 한 건의 성과가 메타에서도 성과로 집계하고, 네이버에서도 성과로 집계하고, 구글에서도 성과로 집계될 수 있습니다. 자사몰 데이터 기준 전환 1건이, 광고 관리자 기준 전환 3건이 될 수 있는 것이죠. 그렇기에 매체 별 광고관리자만을 사용해서 성과를 측정하지 않고 웹으로 랜딩되는 경우 구글 애널리틱스(Google Analytics)를 주로 사용하는 것입니다.
광고 매체가 전환에 기여한 기준은 기간과 방식에 따라 달라질 수 있습니다. 기여 기간을 1일로 설정한다면 3일 전 클릭한 성과는 인정되지 않을 수 있습니다. 기여 모델은 라스트 터치, 퍼스트 터치, 멀티 터치 등으로 구분되고 약 일주일 간 광고를 운영했을 때 (메타, 네이버, 구글 등)
- 사용자가 구매하기 전 마지막으로 누른 광고 매체가 가장 크게 기여했다고 한다면 > 라스트 터치 (Last touch) 모델,
- 사용자가 구매하기 전 처음으로 누른 광고 매체가 가장 크게 기여했다고 한다면 > 퍼스트 터치 (First touch) 모델입니다.
그에 따라 MMP(Mobile Measurement Partner)로 통칭되는 Appsflyer, Airbridge, Adjust와 같은 SDK를 붙이는 등의 추가 tracker가 필요합니다.
보통은 이 부분에서 가장 많은 어려움을 겪습니다. GA와 MMP, 여기서 CRM 솔루션(Braze, Insider 등) 이나 PA(Product Analytics: Amplitude, Mixpanel 등) 솔루션까지 쓴다면 솔루션 내의 데이터 정합성을 맞추는 것 등의 관리가 복잡해지기 때문입니다.
마케팅 웹(Web) 캠페인의 성과는 웹페이지로 랜딩되기에 GA만으로도 측정이 수월합니다. 문제는 앱설치를 목표로 앱스토어로 랜딩시키면서 시작됩니다. 그래서 보통 앱 성과 데이터를 측정하기 위핸 MMP (앱스플라이어/Appsflyer, 에어브릿지/Airbridge, 애드저스트/Adjust 등)을 도입하는데요.
위의 데이터파이프라인 예시처럼, 구글 애널리틱스의 웹 데이터 앱스플라이어의 앱 데이터, 기타 광고 매체들의 광고 데이터를 모아 구글 빅쿼리에 적재하고 이를 태블로를 통해서 대시보드로 제작합니다.
다양한 시각적 형태로, 다양한 성과를, 다양한 차원으로 볼 수 있습니다. 커머스의 배너 성과를 볼 수도 있고, 상품/카테고리/브랜드의 매출 성과를 볼 수 도 있고, 광고 성과를 볼 수도 있습니다. 유입된 광고 매체에 따라 유저들의 LTV로 대변되는 충성도가 다른지도 확인할 수 있고요.
처음의 의문으로 돌아가자면, 인스타그램 계정 키우기도 어떤 측면에서는 퍼포먼스 마케팅으로 볼 수 있겠습니다. '측정'이 가능하기 때문입니다. 콘텐츠를 올리면서 올라가는 팔로워수, 피드의 좋아요수 및 댓글수 그리고 릴스의 조회수 등으로 계정의 성장을 숫자로 '측정'할 수 있습니다.
최근 읽은 '순서 파괴'라는 책에서 인상 깊게 읽은 부분이 있습니다. 아마존의 주요 구성원들이 아마존의 일하기 방식에 대해서 쓴 책입니다.
아마존에서는 목표를 설정할 때 아래 다섯 개 요소를 반영한다고 합니다.
이 중 저에게 가장 와닿았던 것은 측정에 관한 것이었습니다.
September 5, 2024
데이터를 다루면서 고객의 업무 효율을 높이는 것을 도와드리고 있지만, 정작 저의 일에서는 데이터 정리와 효율화는 잘 못하고 있더라고요. 그래서 요즘은 Make와 Zapier를 통해 최대한 많은 일들을 자동화 하면서 좀 더 저의 자유(?) 시간을 만들어가고 있습니다.
👉 Make 자동화 : https://www.make.com/en
그런데 어느순간 Make 자동화가 많아지면서 제가 만들고 운영중인 자동화가 뭔지 헷갈리기 시작했습니다. Make 자동화로 업무효율화를 만들었지만 그럴수록 자동화 솔루션이 정리가 되지 않는 아이러니...
Make에서는 하나의 자동화 과정을 시나리오라고 해서 각 시나리오를 Json 형식으로 저장해서 관리할 수 있습니다. 이러한 Make의 특징을 활용해서 Make에서 시나리오가 새롭게 만들어지거나 업데이트가 되면 각각 구글 드라이브와 노션에 저장 & 업데이트 되는 자동화를 만들어봤습니다.
- 자동화 솔루션 : Make
- DB : Notion, Make DB
- 자료 정리 : 구글 드라이브
1️. Make 어드민의 다양한 시나리오들입니다. 카테고리를 만들 수 있긴하지만 그것만으로는 한번에 어떤게 있는지 확인이 쉽지 않습니다.
2️. Make 자동화 설계 화면 입니다.
3️. Notion에 저장된 최종적인 모습입니다.
👉 업무를 하다보면 고객 리드, 업무 파일, 데일리 보고 등 DB화 & 자료를 정리해야하는 업무들이 빈번하게 있습니다. 해당 시나리오처럼 매번 생산되는 자료를 구글 드라이브와 노션에 자동으로 기록한다면 생각보다 많은 업무를 효율화 할 수 있습니다.
September 4, 2024
Google Analytics를 사용해 보셨다면 ‘세션’이라는 용어에 익숙하실 것입니다. Universal Analytics(GA3)에서는 세션 단위로 데이터를 수집하여 지표를 측정했지만, GA4에서는 데이터 수집 방식이 달라져 주의가 필요합니다. GA4의 세션 관련 지표는 혼란을 일으킬 수 있습니다.
이번 글에서는 세션의 개념을 자세히 살펴보고, GA4에서의 세션이 어떻게 다른지 알아보겠습니다.
세션 관련해서 구글 가이드 문서에 따르면
- 세션은 사용자가 웹사이트 또는 앱과 상호작용하는 기간입니다.
- 세션은 사용자가 앱을 포그라운드에서 열거나 페이지나 화면을 보고 현재 활성화된 세션이 없는 경우 시작됩니다.
- 세션 수 : 고유 세션 ID 수를 추정하여 사이트나 앱에서 발생하는 세션 수를 계산합니다.
예를 들어 유저가 브라우저 탭에서 페이지를 열고 이메일을 확인하거나 다른 일을 하다가 2시간 뒤에 다시 돌아와서 브라우징을 할 수 있겠죠? GA4에서는 이를 페이지 뷰가 있는 세션으로 보고 2시간 뒤에 사용자 참여로 간주하고 새로운 세션으로 기록합니다.
1. 첫 번째 세션:
2. 두 번째 세션:
이때 새로운 세션이 시작되지만 페이지 조회 이벤트는 기록되지 않습니다.→ 두 번째 세션이 사용자 참여로만 기록됩니다
빅쿼리로 실제 어떤 케이스인지 특정 유저의 로그를 한 번 확인 해보겠습니다.
이렇게 페이지뷰 이벤트가 없는 두 번째 세션이 생기며, 이는 참여율(Engagement Rate) 지표로 나타납니다.
참여율 = 참여 세션 수 / 총 세션 수
이런 유저가 많아지면 세션 기반의 지표(예: 세션당 페이지뷰, 세션당 평균 참여시간)가 낮아집니다.
세션당 페이지뷰 수 계산 예시:
페이지뷰 수 / 세션 수 = 10 / 1 = 10
위와 같은 유저의 행동이 늘어나면:
페이지뷰 수 / 세션 수 = 10 / 2 = 5
페이지뷰 이벤트가 포함되지 않은 세션이 발생하니 지표가 감소하게 됩니다.(분모가 커지므로)
따라서 GA3에서 사용하던 세션 기반의 지표는 주의해서 사용해야 하며, 이벤트나 참여 관련 지표(참여 세션)를 보는 것이 좋습니다.
(GA4와 GA3의 데이터 수집 방식도 다릅니다)
자.. 그리고 또 있습니다.
세션 데이터의 현실.. 빅쿼리를 열어보면 .. 더 조심해야겠구나 라는 생각이 들겁니다.
일단 절대 세션수 ≠ session_start 이벤트의 수 가 아닙니다.
왜그런지 직접 조회해보죠!
아래 특정 유저의 세션을 특정해서 조회해봤습니다.
event_name 컬럼에 session_start 이벤트는 없고 다른 이벤트만 있죠?
이런 상황은 빈번하지 않지만 발생할 수 있습니다. 하나의 세션에 두 개의 세션 이벤트가 발생했고, 심지어 사용자 아이디도 다릅니다.
GA4 인터페이스에서는 당연히 단일 세션으로 계산하지 않을 것 같지만 빅쿼리에서는 이런 케이스 때문에 user_pseudo_id와 ga_session_id를 조합해서 각 세션에 대한 고유 식별자를 만들어서 session 을 카운팅 해야됩니다.
concat(user_pseudo_id, (select value.int_value from unnest(event_params) where key = 'ga_session_id')) as session_id,
GA3에서는 세션 윈도우(30분)가 지나면 완전히 새로운 세션이 시작되지만, GA4에서는 기존 세션이 계속 되기 때문에 이렇게 소스가 1개 이상 발생할 수 있습니다.
구글 애널리틱스에서도 세션수를 집계할 때 추정값을 사용합니다.
실제로 빅쿼리에 count(distinct ga_sesssion_id) 를 집계하면 성능에 영향을 줍니다..
그런데 전 세계에서 이걸 조회하는데 이걸 진짜 집계를 ?? 불가능하죠
그래서 HyperLogLog ++ (가이드 링크)라는 알고리즘을 적용해서 추산한 값을 보여줍니다.
실제로 성능을 눈으로 확인해보죠
ga_session_id를 고유하게 카운팅 해보는 쿼리로 비교를 해보겠습니다.
COUNT(DISTINCT ga_session_id)
HLL_COUNT.EXTRACT(HLL_COUNT.INIT(ga_session_id, 14))
차이가 보이시나요? (참고로 데이터 하루치만 조회했고 쿼리 결과는 같습니다)
모든면에서 더 효율적인 처리를 하고 있음을 알 수 있습니다.
사실 GA4에서는 세션이라는 개념은 더 이상 의미가 없고 지금까지 위의 예시를 통해 확인할 수 있었습니다.
그럼에도 세션 지표를 무조건 써야된다면 참여 세션지표를 사용하는게 좋습니다.
이제 이걸 통해서 다음 글에서는 GA4의 꽃 세그먼트 분석에 대해서 알아보겠습니다.
(세그먼트 기능을 쓰려면 세션에 대한 이해가 꼭 필요하기 때문에 이번 글부터 시작하게 되었습니다.)
September 2, 2024
디지털 전환이란 무엇일까요? DT 또는 DX로도 불리는 디지털 전환은 Digital Transformation에서 유래했습니다. 여기서 Transformation, 전환은 상태의 변화를 말합니다. 즉 디지털이 아니던 것이 디지털 상태로 변화하는 것입니다.
디지털 전환, 어쩐지 거창합니다. 마티니의 그로스팀에서 큰 규모의 회사를 방문했을 때 주로 DX실, DT실이 명함에 기재된 경우가 많더라고요. 즉 큰 곳에서 시도하는 경우가 많다는 것이겠죠.
온라인 비즈니스는 진행 중입니다. 오프라인을 온라인으로 전환시키는 DX와 DT는 상당수 진척되었습니다. 평범한 일상만 생각해 봐도 그렇습니다.
즉 현재의 디지털 트랜스포메이션, 디지털 전환(DT, DX)의 주요 과제는 오프라인의 온라인 전환은 아닌 듯합니다.
우리 프로덕트의 사용자가 10명, 100명, 1,000명일 때는 수기가 가능할 수 있습니다. 10명에게는 매일 전화를 할 수도 있을 것이고, 100명에게는 문자를 보낼 수 있을 것이고, 1,000명까지는 어떻게 수기로 그룹화를 해서 카카오톡을 보낼 수도 있겠죠.
하지만 [10,000명] 에게는요? [100,000명] 에게는요? 예를 들어보겠습니다.
[CRM마케팅/수동]
#1 보유한 데이터베이스(DB)에 접근하여
#2 조건에 맞는 쿼리문을 작성하여#3 '고정된 시점'의 사용자 데이터를 추출함
#4 성과 분석 시, 동일 프로세스를 거쳐 특정 시점의 사용자 데이터를 재추출함
#5 엑셀 등을 활용하여 수기로 데이터 값을 비교함
[CRM마케팅/자동] *솔루션 활용
#1 보유한 데이터베이스(DB)를 CRM 솔루션의 클라우드에 연동하고
#2 CRM 솔루션의 어드민에서 변수를 조절하여 (클릭!)
#3 '실시간'으로 사용자 데이터를 추출함
#4 성과 분석 시 어드민에서 변수를 조절하여 (클릭!)
#4 솔루션에서 제공하는 대시보드/그래프 형태로 데이터 값을 비교함
[퍼포먼스마케팅/수동]
#1 광고 매체 별 광고관리자에서 성과를 엑셀로 다운로드 후
#2 보고용으로 맞춰둔 엑셀 형식에 맞춰 복붙 합니다. (ctrl+C, ctrl+V)
*매체 A, 매체 B, 매체 C, 매체 D.... 매체를 많이 쓸수록 이 절차는 많아집니다.
**혹시 글로벌이라면? 국가별로도 쪼개줘야 합니다.
***신규 사용자와 기존 사용자의 리타겟팅을 나눈다고요? 이것도 쪼개서...
#3 매체 성과와 자사 내부 DB 성과의 숫자가 맞지 않습니다.
기여 모델 및 기여 기간의 설정이 다르거나...
[퍼포먼스마케팅/자동]
#1 광고 매체 별 데이터를 연동합니다.
#2 광고 매체와 MMP, CRM 솔루션의 데이터를 통합합니다. (DW)
마케팅 업무 자동화, 마케팅 오토메이션(Automation)의 효율에 대해서 이야기를 종종 하게 되는데요. 업무 효율성을 높이는 것이 수익 상승에 기여하지는 않는단 의견을 종종 듣습니다.
문제 정의와 해결 방안 제시 및 대응. 문제 해결자(problem-solver)라는 직무도 존재하는 것처럼 사실 모든 직업은 분야와 내용과 형식이 다를 뿐, 어떠한 문제를 해결하는 것 아닐까요?
위의 사례로 들었던 CRM 메시지 수신자 추출도, 퍼포먼스마케팅 성과 분석도 고객(사용자)이 아닌 실무자에게 필요한 디지털 전환, 즉 마케팅 자동화의 일환인데요.
여러 기업들의 디지털 전환을 도우면서 가장 기본적이지만 가장 중요했던 것은 바로 '측정'입니다. 웹과 앱에서의 성과 측정을 위해 필수적인 것, 바로 UTM입니다.
웹페이지의 주소인 URL에 UTM 파라미터를 넣어 유입된 사용자들이 어떤 경로로 들어왔는지 파악할 수 있습니다.
보통 퍼포먼스 광고를 운영할 때 페이스북 광고관리자의 구성에 맞추어 캠페인/그룹/소재 단으로 구성하는 경우도 있습니다.
유상 광고(paid media)를 운영하는 퍼포먼스마케팅 외에, 인플루언서 마케팅(earned media)이나 유튜브/인스타그램/블로그 등에 자체 콘텐츠(owned media)를 게재할 때도 UTM을 삽입한 URL을 활용하면 좋습니다!
개인화 추천 시스템: 고객의 과거 구매 내역 및 검색 기록을 바탕으로 맞춤형 제품 추천
챗봇 및 가상 어시스턴트: 고객 문의 및 지원을 자동화하여 실시간으로 대응
고객 세그멘테이션: 고객 데이터를 분석하여 세분화된 마케팅 전략 수립
실시간 데이터 분석: 판매, 트래픽, 재고 등의 데이터를 실시간으로 분석하여 빠른 의사 결정 지원
스케일러블 인프라: 트래픽 변동에 유연하게 대응할 수 있는 클라우드 기반 인프라.
클라우드 기반 CRM: 고객 관계 관리 시스템을 클라우드에서 운영하여 언제 어디서나 접근 가능.
모바일 최적화 웹사이트 및 앱: 모바일 사용자를 위한 최적화된 사용자 경험 제공.
모바일 결제 시스템: 다양한 모바일 결제 옵션 지원.
온라인 및 오프라인 데이터 통합: 고객의 온/오프라인 행동 데이터를 통합하여 일관된 경험 제공.
클라우드 컴퓨팅, 증강 현실 (AR), 사물 인터넷 (IoT), 결제 기술, 로봇 프로세스 자동화 (RPA) 등이 디지털 전환에 필요한 주요 기술로 여겨집니다.
디지털 전환을 검색하면 정말 방대한 의미의 내용들이 나옵니다. 클라우드 컴퓨팅, 인공지능(AI)과 머신러닝(ML), 빅데이터 분석, 사물인터넷(IoT), 블록체인, 사이버 보안 등이 대표되는 단어죠.
생각해 보면 그로스 컨설팅이라고 꼭 디지털 전환이 완료된 상황에서만 될 수 있는 것은 아닙니다. 어느 영역의 디지털 전환이 그로스 컨설팅의 실행 방안이 될 수도 있는 것이죠.
Chat GPT가 생활화되고 AI에 대한 기사가 쏟아지는 요즘이지만, UTM을 잘 쓰는 것도 생각보다 어렵습니다. 디지털 전환을 위해 AI 도입보다 먼저인 것들이 있지 않을까요?
August 30, 2024
이 글을 읽고 계시다면 코호트 분석을 이미 하고 계실 건데 측정 기준에 대해서 의문이 생기신 분이 보실 것 같네요
구글에 '코호트 분석 SQL' 라고 검색하면 정말 많은 글들이 많습니다.
글에서 소개하는 쿼리 예시는 대부분 datediff함수를 활용해서 Date Granularity를 계산합니다.
이해하기 쉽게 예를 들어보겠습니다.
유저 1 : 23:30 에 회원가입 후 다음날 다시 들어왔습니다.
유저 2 : 13:30에 회원가입 후 다음날 다시 들어왔습니다.
day 단위로 계산을 하면 유저 1 은 우리 서비스를 30분 경험하고 다음날 재방문했다고 계산됩니다.
유저 2는 약 10시간 30분 서비스를 경험하고 재방문을 했다고 계산됩니다.
동일한 조건일까요? 그렇지 않죠?
만일 시간 단위로 계산을 하게 되면 특정 행동을 수행한 시간부터 다음 행동까지의 Time window를 24시간 뒤로 하면 이 유저는 다음날이 아닌 모레 재방문했다고 계산되겠죠?
DATEDIFF( [first_event_dt], [second_event], DAY )
DATEDIFF( [first_event_dt], [second_event], HOUR ) / 24 )
월단위로 계산할 때도 마찬가지입니다.
월별 일자수가 모두 다릅니다. 1월(31일), 2월(28일), 4월(30일)...
월 단위로 측정할 때도 30일로 모두 통일해줍니다.
DATEDIFF( [first_event_dt], [second_event], HOUR ) / 24 * 30)
이렇게 계산되면 유저별로 경과 시간은 모두 통일 되었습니다!!
실제로 Amplitude(앰플리튜드)의 코호트 분석 기능에는 이런 기능들이 존재합니다. 만약 안 쓰고 계시다면 직접 쿼리를 날려서...
여기 가이드를 보시면 앰플리튜드가 24시간 단위로 경과 시간을 측청 하는 방식을 설명해 두었습니다.
24시간 윈도우 기준, 캘린더 기준으로 경과 시간(t)을 측정하는 옵션이 있죠?
얼마나 차이를 보였는지 가상의 데이터로 확인을 해보았습니다.
(참고로 더미 데이터는 kaggle 이나 Mockaroo 에서 생성하실 수 있습니다)
참고로 해당 데이터 계산 기준은 월별 첫 구매 기준 재구매율입니다.
t = 1 지점부터 차이를 보이기 시작하는데 t = 0 이 100%라서 차이가 잘 안 보입니다. 로그 스케일을 통해 다시 확인해 보면
확실히 달력 기준의 리텐션율이 조금 더 높아 보이네요
얼마나 차이 나는지 두 기준의 리텐션율을 나눠 보겠습니다 최대 1.27배까지 납니다. (아래 차트에서는 0은 무시합니다. t = 0 은 100%이기 때문에)
t = 1 : 1.15배
t = 22 : 1.27배
데이터에 따라서 차이가 달라지겠지만
코호트의 기준이 만일 회원가입일 기준의 재구매율이거나 회원가입일 기준 재방문율을 측정한다면 더 많은 차이를 보일 수 있을 걸로 예상됩니다.
제가 사용한 쿼리는 아래와 같습니다.
WITH tb_pay_first AS (
SELECT country
,user_id
,min(pay_datetime_id) first_pay_datetime_id
FROM order
GROUP BY 1,2
)
, tb_base_ AS (SELECT st0.*
, FLOOR(TIMESTAMPDIFF(HOUR, st1.first_pay_datetime_id, st0.pay_datetime_id) / 24) AS days_since_first_pay
, FLOOR(TIMESTAMPDIFF(HOUR, st1.first_pay_datetime_id, st0.pay_datetime_id) / (24 * 30)) AS months_since_first_pay_period_24h
, (YEAR(pay_datetime_id) - YEAR(first_pay_datetime_id)) * 12 + (MONTH(pay_datetime_id) - MONTH(first_pay_datetime_id)) AS months_since_first_pay_period_day
, st1.first_pay_datetime_id
FROM order st0
LEFT JOIN tb_pay_first st1
ON st0.user_id = st1.user_id
AND st0.country = st1.country
WHERE 1 = 1
)
, tb_base_24h AS (
SELECT time_id_
, country
, since_time_period_24h
, CASE
WHEN 'acc' = 'normal' THEN SUM(SUM(IF(since_time_period_24h = max_since_time_period_24h, repurchase_user_cnt, 0))) OVER
(PARTITION BY time_id_, country ORDER BY since_time_period_24h DESC RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
ELSE SUM(repurchase_user_cnt)
END AS repurchase_user_cnt
, count(1) pay_user_cnt
, sum(sales) AS sales
FROM (SELECT *
, CASE WHEN since_time_period_24h = 0 AND pay_cnt > 1 THEN 1
WHEN since_time_period_24h = 0 AND pay_cnt <= 1 THEN 0
ELSE 1
END AS repurchase_user_cnt
, MAX(since_time_period_24h) OVER (PARTITION BY country, user_id) as max_since_time_period_24h
FROM
(SELECT tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_24h
, tmp0.user_id
, SUM(tmp0.pay_cnt) AS pay_cnt
, SUM(tmp0.sales) AS sales
FROM
(SELECT DATE_FORMAT(first_pay_datetime_id ,'%Y-%m-01') time_id_
, country
-- , months_since_first_pay_period_day AS since_time_period_day
, months_since_first_pay_period_24h AS since_time_period_24h
, user_id
, COUNT(distinct order_id) AS pay_cnt
, SUM(sales) as sales
FROM tb_base_
-- WHERE DATE_FORMAT(first_pay_datetime_id ,'%Y-%m-01') >= '2023-01-01'
GROUP BY 1,2,3,4) tmp0
GROUP BY tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_24h
, tmp0.user_id
) tmp
) tmp1
GROUP BY time_id_
, country
, since_time_period_24h
)
, tb_base_day AS (
SELECT time_id_
, country
, since_time_period_day
, CASE
WHEN 'acc' = 'normal' THEN SUM(SUM(IF(since_time_period_day = max_since_time_period_day, repurchase_user_cnt, 0))) OVER
(PARTITION BY time_id_, country ORDER BY since_time_period_day DESC RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
ELSE SUM(repurchase_user_cnt)
END AS repurchase_user_cnt
, count(1) pay_user_cnt
, sum(sales) AS sales
FROM (SELECT *
, CASE WHEN since_time_period_day = 0 AND pay_cnt > 1 THEN 1
WHEN since_time_period_day = 0 AND pay_cnt <= 1 THEN 0
ELSE 1
END AS repurchase_user_cnt
, MAX(since_time_period_day) OVER (PARTITION BY country, user_id) as max_since_time_period_day
FROM
(SELECT tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_day
, tmp0.user_id
, SUM(tmp0.pay_cnt) AS pay_cnt
, SUM(tmp0.sales) AS sales
FROM
(SELECT DATE_FORMAT(first_pay_datetime_id ,'%Y-%m-01') time_id_
, country
, months_since_first_pay_period_day AS since_time_period_day
-- , months_since_first_pay_period_24h AS since_time_period_24h
, user_id
, COUNT(distinct order_id) AS pay_cnt
, SUM(sales) as sales
FROM tb_base_
GROUP BY 1,2,3,4) tmp0
GROUP BY tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_day
, tmp0.user_id
) tmp
) tmp1
GROUP BY time_id_
, country
, since_time_period_day
)
, cohort_base_24h AS
(SELECT time_id_
, country
, since_time_period_24h
, repurchase_user_cnt
, pay_user_cnt
, sales
, SUM(sales) OVER w AS acc_sales
, FIRST_VALUE(pay_user_cnt) OVER w AS cohort_user_cnt
, COUNT(1) OVER (PARTITION BY country) AS cohort_cnt
FROM tb_base_24h
WINDOW w AS (PARTITION BY time_id_, country ORDER BY since_time_period_24h RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
)
)
, cohort_base_day AS
(SELECT time_id_
, country
, since_time_period_day
, repurchase_user_cnt
, pay_user_cnt
, sales
, SUM(sales) OVER w AS acc_sales
, FIRST_VALUE(pay_user_cnt) OVER w AS cohort_user_cnt
, COUNT(1) OVER (PARTITION BY country) AS cohort_cnt
FROM tb_base_day
WINDOW w AS (PARTITION BY time_id_, country ORDER BY since_time_period_day RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
)
)
SELECT *
, (pay_user_cnt * 100) / cohort_user_cnt AS retention_rate
FROM
(SELECT 1 AS time_id
, country
, since_time_period_24h
, SUM(repurchase_user_cnt) AS repurchase_user_cnt
, SUM(pay_user_cnt) AS pay_user_cnt
, FIRST_VALUE(sum(cohort_user_cnt)) OVER(PARTITION BY country RANGE BETWEEN UNBOUNDED PRECEDING and CURRENT ROW) as cohort_user_cnt
FROM cohort_base_24h
GROUP BY 1
, country
, since_time_period_24h) tmp3
분석의 기준은 굉장히 중요합니다. 어떤 기준으로 분석하느냐에 따라서 의사결정 방향이 달라질 수 있겠죠?
코호트 분석은 시간을 계산해서 집계하는 분석인만큼 시간의 기준을 제대로 설정하는 게 중요합니다.
저도 실제로 분석해 보면서 분석 기준의 중요성을 다시 한번 깨달을 수 있었습니다.
혹시 지금 day 단위로 코호트 활용해 재구매율을 측정하고 계신다면 24시간 단위로 계산해 보시면 어떨까요?
Reference
https://medium.com/@paul.levchuk/how-to-build-user-cohort-properly-b70a74e5e1c8
August 30, 2024
B2B 비즈니스를 하다보면 고객 리드를 확보하는 마케팅을 많이합니다. 특히 블로그를 통해 자사 비즈니스의 관심과 이해를 높이면서 자연스럽게 리드를 확보하는 전략을 잘 활용합니다. 마티니도 마찬가지로 다양한 자료들을 블로그와 링크드인 등을 통해 공유 하면서 고객 리드를 자연스럽게 확보하고 있습니다.
처음에는 자료도 많지 않고 리드 인입도 드물어서 고객 리드에 대한 대응이 큰 문제가 없었습니다. 아마 대부분의 B2B 회사처럼 정보성 자료로 고객 리드를 확보하는 경우, 리드가 들어온 것을 확인(인지) 하고 리드의 정보를 확인하고(리드 확인) 고객 세일즈 메일(메일 발송)을 보내면서 자사의 서비스를 알리는 단계를 진행하였습니다.
문제는 리드 수집을 위한 정보성 자료의 수와 경로가 서서히 많아지면서 발생합니다. 어느 수준 이상이되면 고객 리드를 잘 확인하는 것도 쉽지 않습니다. Typeform이나 Googleform을 통해 수집하는 경우 스프레드시트와 Slack으로 리드 수집 현황을 보내주긴 하지만 담당자가 부재하거나 다른일을 하는 경우에는 리드 인지 자체를 놓치는 경우도 존재합니다.
실제로 저희도 리드가 많아지면서 리드 담당자의 업무 부하가 늘고 이에따라 리드 피드백이 늦어지면서 대응이 누락되는 경우가 종종 발생하였습니다.
현재는 해당 과정을 모두 자동화해서 리드 인입부터 리드 고객 정리, 리드 정보 요약, 메일 발송까지 모두 자동화 했습니다.
- 리드 수집 : Featpaper
- 리드 알람 : Slack
- 리드 정보 요약 : Chat GPT
- 리드 DB 정리 : Spreadsheet
- 리드 메일 보내기 : Gmail
- 업무 자동화 : Zapier
1️. 이미지는 B2B 리드 마케팅 프로세스로 마티니의 As-is / To-be 모습입니다. 빨간색 블럭이 자동화된 영역입니다.
2️. Zapier 자동화 설계 화면 입니다.
3️. 리드 획득 후 해당 회사의 정보를 찾아보고 정리하는 것도 생각보다 시간이 많이 듭니다. 해당 프로세스를 Chat GPT를 이용해서 일부 도움을 받을 수 있었습니다. 다만, GPT의 정보 최신정 문제와 정보 신뢰도 문제가 있습니다. 프롬프트 엔지니어링을 통해 정보를 못 찾는 경우 정보가 없다는 결과값을 뱉어낼 수 있게 하였습니다.
🙋♂️ 더 해볼 것 : GPT가 정보를 잘 못 찾는 문제는 Perplexity 같은 URL과 검색 기반으로 정보를 수집하는 AI 솔루션으로 대체하면 어느정도 해결이 가능합니다. 아쉽게도 zapier의 연동 app 목록에는 현재 없어서 추후 Make를 통해 구현할까 생각 중입니다. 더 써보면서 자동화 가능 영역을 찾아 업무 생산성을 높이는 고민을 계속 해보려고 합니다.
👉 자동화 너무 재밌네요. 여러분도 AI와 Automation 사용해서 업무 생산성 높여보세요!
August 29, 2024
Modern Growth Stack, 모던 그로스 스택으로 디지털 마케팅 솔루션 에어브릿지(Airbridge)와 브레이즈(Braze), 앰플리튜드(Amplitdue) 등을 다루는 AB180이 개최하는 디지털 마케팅 세미나입니다.
https://www.moderngrowthstack.com/speaker
이번 MGS 2024는 'FUTURE OF GROWTH'라는 주제로 2024.07.31 (수) 9시부터 18시까지 서울 코엑스 1층 그랜드볼룸 & 2층 아셈볼룸에서 진행됩니다.
디지털 마케팅 분야에서 MGS만큼 큰 규모로 개최되는 세미나는 3개+ 정도 있습니다.
1. MGS: Modern Growth Stack by AB180
2. The Maxonomy by CJ Maxonomy
3. MAX Summit by 모비데이즈(MOBIDAYS)
2022년에는 맥스서밋에서 발표를 했었고("온택트 시대, 푸드 테크 기업의 新 마케팅 전략"), 2023년에는 The Maxonomy에서 마티니의 발표 자료("마케팅하는데 개발이 왜 문제일까?")를 만들었고 2024년은 MGS에 마티니의 일원으로 참가하는데요.
MGS와 같은 대형 세미나를 가면 보통 한 장소에 홀이 여러 개 (main, sub1, sub2...) 있고 세션이 나눠서 진행됩니다. 관심사에 맞는 세션을 들으러 시간마다 자리를 이동하곤 하고요.
세션은 다양합니다.
인하우스(브랜드나 플랫폼)에서 마케팅 전략 및 실행안에 대한 인사이트를 나눌 때도 있고 솔루션사(Amplitude, Braze, Airbridge 등 PA, CRM, MMP Soltuion)에서 솔루션의 이점에 대해서 말하기도 하고요. 광고 플랫폼이나 대행사, 컨설팅사 등 주제와 연사도 다양하고 그에 따라 내용과 난이도도 다채롭습니다.
2024년 연사진만 슬쩍 봐도 구글(Google), 메타(Meta), X(엑스: 구 트위터 twitter), 커니(Kearny) 등의 광고 플랫폼들과 컨설팅사 및 29CM 등의 인하우스 눈에 띄네요.
디지털 마케팅 분야에서 유명한 AB180, CJ Maxonomy, 모비데이즈가 개최하는 세미나들인 만큼 운영하는 세션의 주제만으로도 트렌드를 파악하기 충분합니다. 오늘은 MGS 2024의 세션을 통해 최근의 마케팅 트렌드가 무엇인지 알아보려고 합니다.
우선 AB180측에서 분류해 둔 키워드는 #글로벌, #애드테크·마테크, #트렌드 #프라이버시 #게임 #제품분석 #AI #MMP #UA #크리에이티브 #풀퍼널마케팅 #CRM #수익화 등입니다.
키워드가 좀 많다 보니, 세션들을 확인하고 좀 더 포괄적으로 공통되는 주제로 분류하자면 아래 4개의 카테고리 정도입니다. 관련 주제에 어떤 세션들이 준비되어 있는지 짚어봅니다.
디지털 마케팅에서 이제 인공지능(AI)이 빠질 수 없겠죠. AI로 마케팅에 들어가던 인풋을 줄여주거나 성과를 개선하거나 데이터를 활용하는 내용 위주인 듯합니다.
이주원 Meta | Head of Marketing Science, Korea
https://ko-kr.facebook.com/business/ads
안재균 Moloco | 한국 지사장
Andy Carvell Phiture | CEO
이수현, Snowflake | 테크 에반젤리스트
Adrien Kwong, Xtend | Chief Commercial Officer
신창섭 X 코리아 | 대표
CRM: Customer Relationship Management 고객관계관리라는 아주 넓은 의미의 단어로 통용되고 있는 CRM 마케팅은 사용자와 닿는 메시지(팝업 배너, 앱푸시, 카카오톡, 문자, 이메일 등) 위주인데요.
퍼포먼스 마케팅보다는 비용 효율적이고(ex. 광고 소재 클릭당비용 보다는 카톡 발송 비용이 더 저렴한 경우), 웹/앱에서 사용자 행동 기반 개인화가 가능해 그로스해킹/그로스마케팅의 방법론으로도 많이 활용됩니다.
고주연, Braze | Area Vice President of Korea
이건희, 마티니 | 팀장
조형구/강하은, 29CM | Growth Marketer
최동훈, Amplitude | Senior Korea Partner Sales Manager
이재철, 마티니 | 팀장, 이형일, BKR | 이사
조경상, NNT | CEO
민병철, PIEDPIXELS | 사업 이사
오담인, 윤정묵, 장소영, 김형준, AB180 & Airbridge | Customer Success Team
애드테크는 Advertisement+Tech, 마테크는 Marketing+Tech로 광고와 마케팅에 있어 기술을 접목한 형태를 말합니다. 웹이나 앱에서의 성과 측정 및 사용자 행동 분석 등에 필요하죠.
정헌재, AB180 & Airbridge | CPO
김형빈, Viva Republica (Toss) | 부문장
✅ Shaping Android’s Privacy Sandbox
Pan Katsukis, Remerge | Co-Founder & CEO
호명규, Amplitude | 한국영업총괄
진겸, 당근 | 팀장
원하윤, Liner | PM
김동훈, 도소희, 현대카드 | Online Marketing
Bob Wang, PubMatic | Country Manager, Greater China & Korea
이승제, 딜라이트룸 | Product Owner, BD Lead
김나은, AB180 & Airbridge | VP of Growth
최동훈, Amplitude | 한국비즈니스총괄
최준호, Braze | Partner Sales Director
이수현, Snowflake | Tech Evangelist
윤가비, Apptweak | 한국 지사장
#글로벌, #애드테크·마테크, #트렌드 #프라이버시 #게임 #제품분석 #AI #MMP #UA #크리에이티브 #풀퍼널마케팅 #CRM #수익화
그로스마케팅, 그로스해킹, 그로스전략은 아직까지도 유효한 트렌드인 듯합니다. 그렇지만 결국 그로스를 이뤄내기 위해서는 조금 더 세부적인 부문의 실행 방안들이 필요합니다.
실행방안 #풀퍼널 #제품분석 #UA #크리에이티브 #CRM #수익화
사용자 여정의 풀퍼널(Full-Funnel)과 제품을 분석했을 때 프로덕트의 상황에 따라 UA(User Acquisitio, 신규 사용자 획득)에 초점을 맞춰야 할 수도 있고, 크리에이티브를 다변화하며 소재 A/B테스트를 운영해야 할 수도 있고, CRM을 통해서 사용자들에게 다음 단계 혹은 리텐션을 유도해야 할 수도 있고, '구매 전환'을 통한 수익화를 최우선으로 해야 할 수도 있습니다.
.
.
.
최근에 작은 브랜드를 운영하시는 대표님을 만나 뵌 적이 있었는데, 정말 열심히 하는 분이었습니다. 주말이면 온갖 웨비나와 세미나를 섭렵하시고 책도 읽고 강의도 들으시더라고요. 마케팅이 아닌 다른 부문에서 한평생 일하시다가 중장년의 나이에 공부를 하다 보니 따라가고 싶어 노력하신다 하셨어요.
이런저런 이야기를 하다가 저는 대표님께, 이제는 그만 듣고 또 공부하고 그냥 해야 할 때라고 말씀드렸습니다. 지금 수능 보고 낮은 점수받기 싫어서 계속 인터넷 강의 듣는 N수생 같다고요.
할 때는 해야 합니다. 다만 남들이 이미 풀어본 문제를 어떻게 푸는지 알고 가면 좋겠죠. 그 방식이 꼭 나에게도 맞을 거라는 보장은 없지만, 그래도 참고하면 방향성을 잡기에는 훨씬 수월하니까요. 그래서 디지털 마케팅 세미나들이 꽤 유용하지 않나 싶습니다.
August 28, 2024
행사명 : Braze Personalization Master Class Advanced 세미나
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 8월 26일 월요일 오후 7시
이번 세미나의 경우 심도 있는 개인화 기능 활용 실습을 위해 신청해주신 이메일로 Braze 데모 계정 발급을 통해 실습해보실 수 있게 하였고 실습 시간 비중을 늘려 개인화 Liquid 및 Connected Content 기능을 충분히 활용해보실 수 있게 준비했습니다.
지난 개인화 클래스는 전반적인 개념과 기능의 일부를 학습하고 활용해보았다면 이번 클래스는 Braze Liquid가 어떻게 작동하는지 문법을 상세하게 하나하나 배울 수 있는 시간이었습니다.
변수의 지정과 호출, 지정한 변수들의 수식을 적용하는 방법과 더불어 문구, 계산, 날짜 관련 Filter를 살펴보며 익혔습니다. if, for, case when 3가지 태그도 수식과 함께 확인하며 사용하는 시점을 배워보았습니다.
실습의 경우 Nike 제품을 구매한 이력이 있는 유저에게만 보낼 개인화 메시지를 구현해보았습니다.
Connected Content는 Liquid의 활용 시점과 차이점을 비교해보며 어느 상황에서 활용할지 살펴보았습니다.
심화 사례로 쿠폰 만료 D-1 넛지 자동화, 날씨 기반 마케팅 사례를 통해 어떻게 적용할 수 있는지 배웠고 유저가 위치한 도시별로 Connected Content를 활용하여 푸쉬 제목, 바디, 이미지까지 개인화해보는 실습 시간을 가졌습니다.
마티니가 CRM 마케팅을 하면서 생기는 궁금증과 Braze 활용에 있어 어려운 부분을 해소해드리고 CRM 인사이트를 공유하며 소통하기 위한 공간을 마련하였으니 많은 신청 바랍니다.
11월에는 Braze Automation & Data Analytics / Utilization 세미나로 CRM 캠페인 자동화와 더불어 데이터 분석 및 활용해보는 시간을 가질 예정이오니 마티니 블로그 사전등록 페이지를 통해 많은 관심으로 참여 부탁드리겠습니다!
마티니가 여러분의 CRM 성공을 위해 함께 합니다.
August 27, 2024
최근 데이터 시각화 및 분석 도구들이 발전하면서 사용자 친화적인 인터페이스가 중요해지고 있습니다. Google Looker Studio는 이러한 요구에 맞춰 다양한 기능을 제공하며, 그 중 하나가 선형(Line) 차트와 막대(Bar) 차트를 전환할 수 있는 토글 스위치 기능입니다. 물론 기본적인 제공 기능 아니지만 루커스튜디오의 기능을 활용하면 간단하게 구현 가능합니다.
데이터를 분석하는 과정에서 서로 다른 유형의 차트를 사용하면 데이터를 다양한 각도에서 시각화할 수 있습니다. 예를 들어, 막대 차트는 특정 시점의 데이터를 비교하는 데 유용하며, 선형 차트는 시간에 따른 변화를 나타내는 데 적합합니다. 이러한 차트들을 손쉽게 전환할 수 있는 기능이 있으면, 사용자는 더 쉽게 다양한 인사이트를 얻을 수 있습니다.
💡스위치 필터 사용 시 매개변수는 숫자형만 반응. 따라서 텍스트가 아닌 데이터 유형을 숫자로 설정하여 매핑.
💡BarIF(차트 타입 = 1, Revenue, null)
💡LineIF(차트 타입 = 2, Revenue, null)
이러한 토글 스위치 기능은 사용자에게 더 나은 데이터 시각화 경험을 제공합니다. 사용자는 필요에 따라 차트를 전환하며 데이터를 더 직관적으로 이해할 수 있습니다. 이는 데이터 분석의 효율성을 높이고, 더 나은 결정을 내리는 데 도움을 줍니다.
Google looker Studio에서 선형 및 막대 차트를 전환하는 토글 스위치를 구현하는 방법을 알아보았습니다. 이러한 기능은 데이터 분석을 더욱 직관적이고 효율적으로 만들어 줄 것입니다. 이제 여러분도 데이터 시각화를 한 단계 업그레이드 해보세요.
August 26, 2024
에어브릿지(Airbridge)는 데이터 수집부터 마케팅 성과 분석까지 하나의 대시보드에서 진행하는 마케팅 성과 분석 솔루션(MMP)으로, 라스트 터치 어트리뷰션, 멀티 터치 어트리뷰션, 마케팅 믹스 모델링 등 다양한 방법으로 앱과 웹사이트의 마케팅 성과를 함께 분석할 수 있는 통합 마테크 솔루션입니다.
오늘날 MMP 솔루션은 광고주들에게 필수적으로 사용되고 있습니다. 에어브릿지 역시 그 중 하나로, 별도의 연동 없이 통합된 데이터 분석과 어트리뷰션이 가능한 것이 강점입니다.
에어브릿지의 이벤트 구조는 타 플랫폼에 비해 비교적 복잡하기 때문에 이전에 GA4 및 타 분석 솔루션만을 사용하다 에어브릿지를 처음 접했다면 다소 혼란스러울 수 있습니다. 저 역시 꽤 헤맸던 것 같습니다.
이러한 계기로 에어브릿지 택소노미를 설계할 당시 이벤트 구조를 이해하는 데 실제로 도움이 됐던 자료들과 GA4의 구조를 비교하여 전체적인 구조를 설명드리고자 합니다.
ㅡ
에어브릿지의 이벤트 및 어트리뷰트 호출 코드의 작성 방법은 아래 세 가지 경로를 통해 확인하실 수 있습니다.
1. 에어브릿지 유저 가이드(Airbridge Help Center)
유저 가이드를 통해서도 코드를 작성하는 데에는 문제가 없지만 2번 자료의 코드 구조가 비교적 효율적이므로 가급적 2번 자료를 참고하시는 것을 권장드립니다.
2. AB180 깃허브(Github)
1번 유저 가이드의 코드 예시 보다 더욱 상세한 전체 코드를 확인하실 수 있습니다.
3. 유저 가이드 및 에어브릿지 공식 문서(Data Spec)
에어브릿지에서 제공하는 Event와 Attribute의 목록과 상세 정보들을 확인하실 수 있습니다.
에어브릿지 이벤트 구성 요소에는 카테고리(Event Category), 액션(Event Action), 라벨(Event Label), 밸류(Event Value), 어트리뷰트(Attribute), 트리거(Trigger)가 있습니다.
다소 복잡해 보이지만 조금만 들여다보면 이해하기 쉽습니다.
위 이벤트 구성 요소의 개념들이 조금 생소하신 분들은 GA4의 예시로 보면 이해하기 쉽습니다.
(GA4의 Metrics & Dimension에 대한 기본 개념이 궁금하신 분들은 관련 자료를 참고해 주세요)
- GA4 보고서
- Airbridge 보고서
GA4의 측정기준(Dimensions)이 에어브릿지의 카테고리, 액션, 라벨의 역할을 하고,
측정항목(Metrics)이 에어브릿지의 밸류의 역할을 한다고 비교해 볼 수 있습니다.
예를 들어, 의류를 판매하는 모 기업의 마케팅 담당자가 구매 이벤트 발생 시 아래와 같은 항목들의 데이터를 수집한다고 가정합니다.
Purchase
모두 시맨틱 어트리뷰트로 수집 가능한 항목들이지만 어트리뷰트의 경우 에어브릿지 리포트에서 확인할 수 없기 때문에 CDP와 같은 고객DB에 접근하거나 별도의 솔루션으로 전처리하여 확인해야 합니다. 이런 경우 유용하게 쓰일 수 있는 항목이 액션과 라벨입니다.
만일 자주 사용하는 어트리뷰트 항목을 에어브릿지의 리포트와 대시보드에서 활용하고자 한다면 어트리뷰트 항목을 액션과 라벨에 세팅하여 어트리뷰트에 대한 데이터를 리포트에서도 확인할 수 있습니다.
다시 말해, 1개의 카테고리와 2개의 어트리뷰트(액션, 라벨)에 대한 통계를 에어브릿지의 리포트와 대시보드에서 쉽고 빠르게 확인할 수 있습니다.
아래 이미지는 스탠다드 이벤트 중에서 일정 예약 이벤트(airbridge.subscribe)의 예시입니다. 일정을 예약한 지역은 액션 또는 라벨로 수집할 수 있으며, 시맨틱 어트리뷰트를 활용하면 예약한 ID(scheduleID)와 예약일시(datetime)를 수집할 수 있습니다.
밸류는 에어브릿지 이벤트가 수집한 숫자를 계산에 이용하기 위해서 선택해야 하는 구성요소입니다. 에어브릿지 이벤트의 밸류로 수집된 숫자만 계산에 이용할 수 있습니다. 밸류로 소수점 9자리 이하 숫자까지 수집할 수 있습니다.
예를 들어, 레비뉴 리포트(Revenue Report)에서 판매한 제품의 가격을 더해 전체 판매 가격을 계산하거나 디지털 서비스의 구독료를 전부 합해서 전체 구독료를 확인하기 위해서는 밸류를 반드시 이벤트 구성요소로 사용해야 합니다.
또한, 밸류로 수집된 데이터는 밸류로 수집된 다른 데이터와 계산할 수 있습니다. 액션이나 라벨로 수집된 데이터는 계산에 활용할 수 없습니다. 그러나 이벤트 발생 횟수는 밸류 사용 여부와 상관없이 확인할 수 있습니다.
예시) 구매 완료 이벤트
위 예시와 같이 액션과 라벨, 밸류 모두 숫자로 수집한다고 하더라도 밸류로 수집한 데이터만 계산할 수 있으며, 액션과 라벨로 수집한 데이터는 계산할 수 없습니다. 예시에서는 구매 완료 이벤트의 밸류로 수집한 데이터를 더해서 30,000이라는 수치를 얻을 수 있습니다.
매출 관련 데이터는 속성으로 수집하는 것이 일반적이나, 에어브릿지의 경우에는 Attribute가 아닌 Value로 수집합니다. 즉 밸류에는 보통 구매액이 들어가고, 어트리뷰트에서는 기타 정보들을 수집합니다.
Semantic Attribute로 사용할 수도 있지만, Actuals Report나 Revenue Report에서는 이벤트 밸류에 Semantic Attribute의 isRevenue 값을 True로 설정한 카테고리(이벤트)로부터 발생한 매출액(Value 값)을 기준으로 확인하기 때문에 이는 적절하지 않습니다. (설정 가능한 Revenue 이벤트 수: 최대 5개)
Revenue 이벤트를 설정할 때 한 가지 유의할 점은 Revenue의 구조가 다양한 서비스일 경우(전환 포인트: 포인트 충전, 제품 결제, 광고 충전 포인트 등), Revenue Report에서 확인할 최종 전환 기준 한 가지를 선정하셔야 합니다.
만일 아래와 같이 구매 완료 시 2개의 매출 관련 이벤트가 동시에 호출되고 2개의 이벤트 모두 Revenue 이벤트로 설정한 경우 중복집계가 될 수 있기 때문입니다.
예시)
- 주문 완료 이벤트 발생 시 단위별 이벤트 동시 호출
매출액 집계 기준을 제품 단위로 볼지, 주문서 단위로 볼지 결정하고 결정된 하나의 카테고리(이벤트)에 isRevenue를 세팅해야 중복집계를 방지할 수 있습니다.
따라서 Revenue로 집계할 이벤트와 기타 매출 관련 데이터를 집계해야 하는 이벤트를 별도로 관리하시는 것을 권장드립니다.
각 카테고리(이벤트)에는 다양한 속성 정보가 수집되는데, 플랫폼마다 정의하는 '속성명'이 상이합니다. GA의 경우 Parameter, 에어브릿지의 경우 Attribute로 정의합니다. 이벤트(카테고리)명 역시 GA4의 경우 Event, 에어브릿지의 경우 Standard Event라고 정의합니다. 각 플랫폼별로 기본적으로 제공되는 속성들이 있으며, 에어브릿지의 경우 Data Spec에서 확인이 가능합니다.
Airbridge Event
Airbridge Attribute
따라서 데이터의 수집 구조를 충분히 고려하여 분석 환경을 구축해 놓는 것이 좋습니다.
August 23, 2024
디지털 시대의 급속한 발전과 함께 마케팅 환경이 빠르게 변화하고 있습니다. 다양한 채널을 통한 고객 접점이 증가하면서 기업들은 복잡해진 고객 관계 관리(CRM)에 직면하고 있습니다. 이러한 상황에서 CRM 대시보드의 중요성이 더욱 부각되고 있습니다.
CRM 대시보드는 여러 채널에서 수집된 CRM 캠페인 데이터를 통합하여 분석하고, 현황을 한눈에 파악할 수 있게 해주는 강력한 방법입니다. 다양한 CRM 채널로 인해 단일 기준으로 분석하기 어려운 데이터들을 대시보드를 통해 효과적으로 통합하고 시각화함으로써, 마케터들은 보다 신속하고 정확한 CRM 마케팅 의사결정을 내릴 수 있게 됩니다.
이러한 CRM 대시보드의 활용은 단순히 데이터를 보여주는 것에 그치지 않습니다. 실시간으로 캠페인 성과를 모니터링하고, 고객 행동 패턴을 분석하며, 각 채널별 효과를 비교할 수 있게 해줍니다. 이를 통해 기업은 더욱 효율적인 마케팅 전략을 수립하고, 고객 경험을 개선하며, 궁극적으로는 ROI를 향상시킬 수 있습니다.
본 글에서는 범용적으로 활용가능한 CRM 대시보드를 템플릿을 제공합니다.
Looker Studio CRM 캠페인 대시보드 템플릿은 마케팅 캠페인의 성과를 실시간으로 모니터링하고, 데이터를 시각화하여 분석할 수 있도록 돕는 강력한 도구입니다. 이 템플릿을 통해 효과적인 의사결정을 지원하고, 전략을 최적화할 수 있습니다.
Looker Studio CRM 캠페인 대시보드 템플릿은 캠페인의 실시간 성과 모니터링, 데이터 시각화, 마케팅 전략 최적화를 목적으로 활용됩니다. 이를 통해 효과적인 의사결정과 전략적 개선이 가능합니다.
실시간 대시보드를 통해 데이터를 업데이트하고, 다양한 필터 기능을 사용하여 원하는 데이터를 정확히 추출할 수 있습니다. 맞춤형 리포트를 생성하여 필요에 따라 커스터마이즈된 분석이 가능합니다.
마케팅 팀, 경영진, 데이터 분석가 등 다양한 사용자들이 이 템플릿을 활용하여 캠페인 성과를 모니터링하고 분석할 수 있습니다.
1. 주기적인 업데이트
2. 필터 활용
3. 성과 지표 설정
4. 데이터 비교
5. 팀과 공유
템플릿은 마케팅 캠페인의 성과를 종합적으로 관리하고 분석하는 데 유용하며, 데이터를 기반으로 한 전략적 의사결정을 지원합니다.
August 23, 2024
지난 7월 31일, 국내 최대 마케팅 컨퍼런스 MGS 2024가 뜨거운 열기속에서 마무리되었습니다.
🍸 "우리 잘하고 있는건가?": CRM 마케터들이 궁금해하는 고민과 해결방안
🍸 버거킹도 Amplitude를 쓴다고? 어떻게 쓰는데?
🍸 쏘카 CRM 마케터가 일하는 방법: Braze로 개발자 없이 캠페인 고도화하기
MGS 2024 컨퍼런스에서는 위와 같은 세션을 진행했었는데요. MGS에서 진행했던 마티니 세션을 듣지 못하신 분들을 위해 2024 Recap 행사를 진행했습니다. 이번 행사에서는 AB180과 Snowflake의 세션도 확인할 수 있었고 마케팅과 개발 간극부터 마테크 솔루션 도입 및 활용까지 다양한 고민과 궁금증을 해소해드리는 자리를 마련했습니다.
마티니 세션에서는 대표 선규님이 마케팅의 현 시장 상황 설명을 바탕으로 마티니가 가지는 강점과 차별점을 소개해드렸고 이어 마티니 Growth팀 리더 재철님이 버거킹의 Amplitude 도입 및 활용 과정을 함께하며 진행한 내용들을 공유해드렸습니다.
구매 횟수별 고객 특성과 구매 시간대별 고객 특성 2가지 실험의 과정과 결과를 Amplitude를 활용한 버거킹 쿠폰 설계 및 적용 과정을 바탕으로 설명해드렸습니다.
CRM팀 리더 건희님이 마티니 CRM팀이 수많은 고객사와 CRM 담당자들과 협업하고 소통하며 느꼈던 고민과 6,000여개가 넘는 CRM 캠페인을 런칭하며 경험했던 해결 방안들을 공유해드렸습니다.
AB180 세션에서는 SKAN의 개념와 활용법부터 ATT 동의율을 극대화시킬 수 있는 팁들까지 배울 수 있는 시간이었습니다.
Snowflake 세션에서는 Snoiwflake의 AI 기반 Data Cloud 특징과 장점을 바탕으로 비즈니스 발전 가능한 부분을 피자헛 사례를 통해 확인할 수 있었습니다.
행사 세션이 끝난 후엔 마티니와 AB180, Snowflake가 MGS와 더불어 이번 세션 때 받지 못했던 질문과 고민들을 함께 듣고 공유하며 참석해주신 분들과 자유롭고 편하게 다양한 이야기들을 나눌 수 있었습니다.
MMP부터 PA까지 마테크 솔루션 도입과 활용에 관해 소통하는 시간을 가졌습니다.
마티니는 퍼포먼스, 그로스, CRM의 ‘&’를 기반으로 유기적으로 협업하며 체계적인 단계로 비즈니스 성장을 이끌고 있습니다.
버거킹 사례에서 설명드린 것처럼 Amplitude와 Braze 활용과 연계뿐만 아니라 다양한 MMP, CRM, PA 툴의 연계 및 활용까지 마티니가 함께 합니다. 도입 초반부터 활용까지 모두 알려드리는 마티니와 함께 마테크 솔루션을 제대로 활용해서 비즈니스를 성장시켜보세요.
August 23, 2024
앰플리튜드(Amplitude) Product Analytics, PA라고도 불리는 분석 솔루션 중 하나입니다. 구글에 '앰플리튜드'를 검색했을 시 스폰서(광고) 제외 두 번째 위치에 제 브런치의 글이 나옵니다. 어떻게 했을까요?
https://brunch.co.kr/@marketer-emje/8
상위노출 방법 전에 SEO의 개념을 먼저 훑고 갑니다!
Search Engine Optimization의 약자로, 검색엔진을 최적화한다는 뜻입니다. *검색엔진은 Google, Naver와 같이 '검색'을 통해 정보를 찾아주는 플랫폼이죠.
즉 SEO란 검색엔진에 노출되는 페이지를 최적화하여 상위 노출을 시키고, 특정 키워드를 검색한 사용자들이 상위 노출된 페이지를 보고 클릭하여 사이트에 '무료'로 유입될 수 있도록 하는 것을 말합니다.
사실 SEO 최적화라는 말은 Optimiziation의 뜻이 중복되는 말이지만, '최적화'가 가장 중요한 부분이니 만큼 강조된다고 생각할 수 있습니다.
SERP는 Searh Engine Result Page의 약자로 검색 결과 페이지라는 뜻입니다. 검색엔진에 특정 단어를 검색했을 시 노출되는 결과 페이지를 말합니다. 구글에 'SEO 최적화'를 검색했을 시의 SERP를 예시로 보면
1. 추천 스니펫 영역 2. 개별 사이트/페이지 노출 영역으로 구분되어 있네요. 구글 SERP의 구조 상, 스니펫은 없는 경우도 있고, 광고(sponsor)가 추가되는 경우도 많습니다.
CPC가 O원입니다. 배너 광고나 검색 광고처럼 Click per Cost(클릭당 비용)이 발생하지 않습니다. 즉 SEO 최적화에 의해 상위노출된 페이지로 생기는 트래픽은 '무료'로 발생한다는 것이죠.
이는 마케팅에서 중요한 포인트입니다. 구글 검색광고나 네이버 검색 광고 중 경쟁 강도가 높은 키워드들의 경우 한 번의 클릭에 1, OOO원은 기본이며 비싸게는 1O, OOO원~2O, OOO원의 비용이 듭니다. (단 한 번의 클릭인데요! 심지어 그다음 단계로 전환될 것이라는 보장도 없습니다, 실수로 눌려서 예산은 소진됩니다.)
그런데 SEO 최적화로 상위노출이 되는 페이지들은, 맨 처음 페이지 제작에 들어가는 초기 비용을 제외하면 추가 비용이 들지 않습니다. 꾸준히 새로운 사용자가 유입되고, 트래픽이 발생합니다.
앰플리튜드 관련 글은 4월에 조회수 2,000 > 5월에 조회수 3,000 > 7월에 조회수 4,000을 돌파했습니다.
다른 브런치 글들에 비하면 작게는 4배, 크게는 10배 차이입니다.
물론 미미한 숫자이지만 이렇게 생각하면 꽤 크지 않나요? 이런 자연 유입이 여러 키워드에서 잡힌다면 DAU/MAU에 꽤 유효하게 작용하게 됩니다.
클릭당비용(CPC) 외에 클릭률(CTR)을 본다면, 자연 영역에서 최상위 노출이 될 시 클릭률이 최대 53%에 달한다는 결과가 있었습니다. (*제가 사용자일 때도, 전 스폰서/광고가 걸린 페이지는 거의 안 누르긴 합니다.)
SEO 최적화, 즉 검색엔진에 잘 맞는 페이지로 만들어줘야 상위노출이 잘 잡힙니다. 여기서 SEO 방법론은 몇 가지로 나눌 수 있습니다.
웹사이트 내부에서 SEO를 최적화할 수 있는 요소입니다. 타이틀 태그와 메타 설명(meta description), 헤더 태그(header tag: H1, H2, H3...), 키워드 선정 및 사용, 콘텐츠 품질(이미지 포함), 링크 활용, 로딩 속도, 모바일 친화성 등이 있습니다.
내부에서 관리할 수 있는 영역인 것이지, 내부에서의 요소는 외부에도 고스란히 영향을 미칩니다. 무신사의 디스이즈네버댓 브랜드 페이지를 보면 내부에서 기재해 둔 텍스트가 구글 검색 시 동일하게 노출되는 것을 확인할 수 있습니다.
웹사이트 외부에서 SEO를 최적화할 수 있는 요소입니다. 백링크(back-link), On-page SEO에서는 페이지 내에 링크를 걸었던 것과 반대로 링크가 걸림 '당하는 것'입니다. 검색엔진에서 노출에 있어 선호하는 신뢰도가 높은 사이트 등 다른 사이트에서 자신의 사이트로 연결되는 링크가 있으면 좋습니다. 이외 SNS 등의 소셜 미디어, 인플루언서 등의 활용이 있습니다.
제가 더 주요하게 소개하고자 하는 SEO 최적화 방법론은 콘텐츠 SEO와 테크니컬 SEO로 나눌 수 있습니다.
콘텐츠 SEO에 주요한 요소는 키워드와 콘텐츠, 메타데이터입니다.
키워드 최적화는 프로덕트/서비스와 사용자, 시장, 경쟁사(유사 서비스)에서 사용하는 키워드를 분석하고 활용하는 것이 중요합니다.
a. 프로덕트/서비스에서 사용하는 키워드
b. 사용자가 사용하는 키워드
c. 시장에서 사용하는 키워드
d. 경쟁사가 사용하는 키워드
콘텐츠 최적화는 앞서 키워드 분석을 통해 선정한 주요 키워드 위주로 콘텐츠의 내용을 채우는 것과 콘텐츠의 형식을 구조화하는 것이 중요합니다.
a. 콘텐츠의 내용
b. 콘텐츠의 형식
메타 데이터는 웹 페이지 관련 정보를 제공하여 검색 엔진 및 소셜 미디어 플랫폼 내 페이지의 표시 방식에 영향을 미칩니다.
메타 데이터(메타 태그) 최적화
메타 데이터는 웹 페이지의 정보와 속성을 설명하고 검색 엔진 및 소셜 미디어에서 공유할 때 사용되어, 사용자에게 페이지 내용을 이해시키고 검색 엔진이 페이지를 색인화하는 데 도움을 줍니다.
*HTML 구조는 웹 페이지의 레이아웃과 콘텐츠를 정의하고, 시맨틱 태그는 HTML 구조 내에 의미론적으로 중요한 부분을 강조하며 메타 데이터는 검색엔진과 사용자에게 그 정보를 제공하는 것입니다.
자사몰을 보유하고 있을 때는 위와 같은 요소들을 고려하는 것이 필요합니다. 다만 개인의 페이지일 때는 검색엔진에 따라 유리한 사이트들이 있습니다. 예를 들어 똑같이 글을 쓰는 플랫폼이라고 하더라도, '네이버'에서는 네이버 블로그만이 노출되는 것처럼 '구글'에서는 워드프레스, 티스토리, 브런치 등이 유리합니다.
신경 쓰지 않았습니다. 고려했다면 워드프레스 등으로 블로그를 구축했겠으나... 시간을 아끼고자 했습니다. 대신 구글 상위노출을 목표로는 브런치를, 네이버 상위노출을 목표로는 개인 블로그를 활성화시켰습니다.
신경 많이 썼습니다! 키워드를 찾고, 선정하고, 글감을 목록화했습니다.
약 60장의 페이지에 꾹꾹 눌러 만들었습니다. 성함/이메일/회사의 정보를 입력해 주시면 다운로드하실 수 있어요!