

MCP(Model Context Protocol)는 AI가 외부 데이터를 활용할 수 있도록 연결해 주는 개방형 표준 프로토콜입니다. 쉽게 말해, AI 도구가 실시간으로 필요한 데이터를 가져와 활용할 수 있게 만드는 기술입니다.
앱스플라이어는 이 기술을 활용해 자연어만으로 마케팅 데이터에 바로 접근 가능한 MCP를 선보였습니다. Claude, ChatGPT 같은 AI 도구와 앱스플라이어를 연결하면, 캠페인 성과 분석부터 오디언스 관리, 딥링크 문제 해결까지 질문만으로 처리할 수 있습니다.
또한 앱스플라이어 MCP는 기술적 배경과 관계없이 누구나 필요한 데이터를 즉시 확인할 수 있도록 지원합니다. 사용자가 직접 질문하든, AI 에이전트에게 작업을 맡기든, 대기 시간 없이 명확한 정보와 실행 결과를 바로 받아볼 수 있습니다.

앱스플라이어 MCP는 Claude, ChatGPT, Gemini 같은 사용자가 선호하는 LLM(Large Language Model) 도구와 앱스플라이어를 연결합니다. 사용자가 질문을 입력하면 MCP가 자동으로 필요한 데이터를 찾아 이해하기 쉬운 형태로 보여줍니다. 어트리뷰션, 분석, 오디언스, OneLink(원링크) 등 앱스플라이어의 모든 기능을 자연어로 바로 활용할 수 있습니다.
또한 앱스플라이어는 7,000개 이상의 주요 브랜드가 신뢰하는 풍부하고 정확한 데이터를 제공하기 때문에 개인정보 보호를 철저히 준수하며 마케터가 필요한 인사이트를 즉시 확인하고 빠르게 의사결정을 내릴 수 있도록 돕습니다.
앱스플라이어 MCP는 개방형 구조로 설계되어 있어, 원하는 방식으로 커스터마이징할 수 있습니다. 미디어 믹스를 최적화하는 AI를 만들거나, 오디언스를 자동으로 관리하는 시스템을 구축하거나, 내부 도구에 MCP를 연결하는 등 복잡한 설정 없이도 필요한 기능을 유연하고 자유롭게 구현할 수 있습니다.

채널별 ROAS를 확인하고 싶거나, 어떤 캠페인이 가장 높은 LTV를 만드는지 알고 싶을 때 앱스플라이어 MCP를 활용해 보세요. 질문만 입력하면 필요한 데이터를 바로 확인할 수 있습니다.
앱스플라이어 MCP는 사람이 직접 질문하거나 AI 에이전트가 자동으로 작업하는 방식 모두 지원합니다. Growth, CRM, 제품, 마케팅 팀 등 어떤 팀이든 별도의 설정이나 개발 작업 없이 필요한 인사이트를 바로 확인할 수 있습니다.
앱스플라이어 MCP는 앱스플라이어의 어트리뷰션 기술을 기반으로 만들어졌습니다. 모든 데이터는 개인정보 보호 규정을 철저히 준수하며, 설계 단계부터 암호화와 보안을 적용했습니다.

캠페인 성과를 실시간으로 확인하고, ROI를 비교할 수 있습니다. 채팅창에서 직접 확인하거나, AI 에이전트를 활용해 성과 모니터링부터 최적화, 작업 실행까지 자동으로 처리하세요.
오디언스가 어떻게 나뉘고 활용되는지 한눈에 확인할 수 있습니다. 질문만으로 오디언스 현황을 조회하거나 실시간 성과를 분석할 수 있으며, 중복된 오디언스를 찾아내고 개선 방안을 제안하는 AI를 직접 만들 수도 있습니다. 필요하다면 여러 채널의 오디언스 정보를 자동으로 동기화하거나 작업을 실행할 수도 있습니다.
대화형 인터페이스로 OneLink 템플릿과 링크 동작을 간편하게 점검하거나, 에이전트를 활용해 링크 상태를 지속적으로 모니터링할 수 있습니다. 문제가 있는 링크를 자동으로 찾아내고, 모든 캠페인이 올바르게 운영되도록 관리할 수 있습니다.
앱 설정이나 구현 방법이 궁금할 때 질문만으로 바로 확인할 수 있습니다. AI 어시스턴트가 설정 오류를 찾아내 해결 방법을 알려주거나, 상황에 맞는 가이드 문서를 자동으로 보여줍니다.
앱스플라이어 MCP는 AI 기반 마케팅을 향한 중요한 첫걸음입니다. 사람의 창의성과 AI의 분석 능력이 결합되면, 마케터는 더 나은 의사결정을 내릴 수 있습니다.
MCP는 캠페인 분석, 오디언스 확인, 딥링크 관리 같은 마케터들의 핵심 업무를 지원하고 있으며, 추후 예측 분석과 에이전트 기반 자동화까지 확대 될 예정입니다. 데이터 기반으로 더 빠르고 정확한 의사결정을 내리고 싶다면, 지금 바로 앱스플라이어 MCP를 경험해 보세요.



브레이즈 캔버스(Canvas)는 고객의 행동과 속성을 기준으로 개인화된 메시지 흐름을 설계하는 고객 여정 오케스트레이션 도구입니다. 단일 캠페인이 하나의 캠페인을 특정 조건에 따라 발송하는 데 초점을 맞춘다면, 캔버스는 고객의 행동에 따라 여러 메시지와 채널을 유기적으로 연결합니다.
예를 들어, 회원가입 후 7일까지의 유저 저니 설계, 첫 구매까지의 지속적인 구매 유도 메시지 발송 등 단일 순간에 그치지 않고 지속되는 기간 동안 유저 저니에 따라 메시지를 보낼 수 있습니다.
캔버스를 활용하면, CRM 마케팅을 ‘단발성 메시지 발송’에서, 지속적인 고객 경험 관리로 확장할 수 있습니다.
특히 고객 행동이 빠르게 변화하는 환경에서는, 잘 설계된 캔버스가 마케터의 반복적인 운영 부담을 크게 줄여줍니다.


브레이즈 캔버스는 크게 진입 조건(Entry), 액션(Step), 분기(Split)으로 이루어져 있습니다.
해당 속성을 잘 활용하면, CRM 마케터는 하나의 캔버스 안에서 다양한 시나리오를 운영할 수 있습니다. 그뿐만 아니라 고객의 입장에서도 ‘자연스러운 경험’이 가능해져 더 높은 전환 성과를 기대할 수도 있습니다.
브레이즈 캔버스는 강력한 도구이지만, 설계 목적이 명확하지 않으면 오히려 캠페인 운영이 복잡해질 수 있습니다. 하나의 캔버스에는 하나의 목표를 두고, 온보딩•전환•리텐션 등 목적별로 캔버스를 분리해 설계하는 것이 효과적입니다.
또한, 지나치게 많은 분기와 조건은 운영 중 오류나 누락을 유발할 수 있습니다. 초기에는 단순한 구조로 시작하고, 성과와 데이터를 기반으로 점진적으로 고도화하는 방법이 안정적입니다.
마지막으로 데이터 반영 시점을 고려하여 적절한 대기 시간과 조건을 설정해야 합니다.
캔버스는 한 번 만들고 끝나는 것이 아니라, 운영 후 지속적으로 점검하고 개선해야 성과로 이어집니다.

CRM 마케팅의 중요성이 높아지면서, 많은 기업에서 브레이즈(Braze)를 활용해 CRM 마케팅을 진행하고 있습니다. 간단하게는 푸시 메시지 발송부터, 깊게는 캠페인 자동화까지. 브레이즈는 많은 CRM 마케터들에게 익숙한 도구가 되었습니다. 하지만 실제로 현장에서 듣는 이야기는 조금 다릅니다.
“기능은 많은데, 어디까지 쓰고 있는지 모르겠다”
”이 정도면 잘 쓰고 있는 건지 감이 안 온다”
브레이즈를 사용하는 것과 잘 ‘활용’하는 것은 다른 문제이기 때문입니다.
마티니는 이러한 고민에서 출발해, 브레이즈 활용도를 자가진단 해볼 수 있는 질문을 마련했습니다. 자가진단의 목적은 단순히 점수를 매기는 것이 아니라, 현재 우리 팀의 CRM 운영이 어느 단계에 와 있는지, 그리고 다음 단계로 나아가기 위해 무엇이 필요한지를 스스로 인식할 수 있도록 돕는 데 있습니다.
실제로 자가진단에 참여한 기업들을 살펴보면, 캠페인과 자동화는 잘 운영되고 있지만, 데이터 활용, AI 기능, 신규 채널(RCS 등)은 아직 충분히 활용되지 못하고 있는 경우가 많았습니다.

브레이즈를 사용하고 있다면, 이제는 ‘얼마나 잘 활용하고 있는지’를 점검해야 할 시점입니다. 지금 바로 우리 팀의 브레이즈 활용도를 진단해 보세요.
자가진단 점수 구간에 따라 현재 브레이즈 활용도가 어느 수준인지 쉽게 확인해볼 수 있습니다. 결과 페이지에서는 현재 활용 단계에 따른 제안도 함께 확인해볼 수 있습니다.
마티니가 정리한 브레이즈 활용 인사이트와 실제 사례를 통해, CRM을 한 단계 더 고도화하는 방법을 확인해 보세요.


데이터를 분석하다 보면 ‘이 질문에 답하려면 어떤 차트를 만들어야 할까?’라는 고민을 자주 하게 됩니다. 앰플리튜드(Amplitude)는 이러한 고민을 덜어주기 위해 Ask Amplitude를 선보였습니다.
Ask Amplitude는 사용자가 자연어로 질문을 입력하면, 곧바로 적합한 차트를 생성하고 인사이트를 제공합니다. 지금부터 Ask Amplitude를 실무에서 어떻게 활용할 수 있는지, 구체적인 사례를 통해 살펴보겠습니다.

행동 데이터의 핵심 가치는 질문에 답하고, 의사 결정에 필요한 인사이트를 도출하는 데 있습니다. 그러나 지금까지 앰플리튜드를 사용하는 많은 사용자들은 제품 UI에서 차트를 단계별로 직접 구성해야 했습니다.
이제 Ask Amplitude를 통해 이러한 복잡한 차트 작성 과정을 대폭 간소화할 수 있습니다. 여러 단계를 거쳐 차트를 구성할 필요 없이, 아래 예시처럼 궁금한 내용을 질문 형태로 입력하기만 하면 됩니다.
Ask Amplitude는 질문을 이해하고, 적절한 차트 유형과 이벤트, 속성을 자동으로 선택해 결과를 보여줍니다. Amplitude AI Agent 기능과 함께 활용하면, 데이터 분석에 필요한 시간과 노력을 크게 줄일 수 있습니다.
Ask Amplitude는 데이터팀에 의존하지 않고도 누구나 스스로 데이터를 탐색할 수 있도록 설계되었습니다. 단순히 질문에 답하는 AI가 아니라, 실무자가 제품 데이터를 직접 활용할 수 있도록 돕습니다.

예를 들어 ‘사용자 가입부터 노래 또는 영상 구매까지의 퍼널 전환율은 어떻게 되나요?’라고 질문했다고 가정해 보겠습니다.
Ask Amplitude는 전환율 수치만 제공하는 데서 그치지 않고, A/B 테스트 가입 그룹별로 데이터를 분할하고, 전날 대비 지표를 비교하며, 첫 단계에서 안드로이드(Android)와 iOS 플랫폼만 필터링하는 방법까지 함께 보여줍니다.
또한 자연어 기반으로 데이터 분석을 구성할 수 있게 되면서, 실무자가 필요한 시점에 직접 서비스 데이터를 분석하고 인사이트를 도출할 수 있게 되었습니다. 이렇게 생성된 차트는 단순한 보고용 결과가 아니라, 실무자가 스스로 지식을 쌓고 다음 질문에 주도적으로 답할 수 있는 토대가 됩니다.

편리함만을 이유로 AI가 차트를 무분별하게 생성하게 두면 문제가 발생할 수 있습니다. 비슷한 내용의 차트가 여러 개가 있으면, 오히려 어떤 차트를 신뢰해야 할지 판단하기 어려워지기 때문입니다.
Ask Amplitude는 시맨틱 검색을 활용해 이러한 문제를 방지합니다. 새로운 차트를 만들기 전에 먼저 앰플리튜드 내에 이미 존재하는 콘텐츠를 검색하고, 동료들이 만들고 검증한 차트 중 유사한 것이 있는지부터 확인합니다.
이러한 검색 기법은 ‘스트리밍된 비디오 시간’과 ‘총 시청 시간’처럼 표현은 다르지만 같은 의미를 가진 용어까지 인식합니다. 덕분에 사용자는 대부분의 경우 새로운 차트를 추가로 생성하지 않고도 필요한 콘텐츠를 찾을 수 있으며, 앰플리튜드 내 콘텐츠의 품질과 신뢰도를 함께 유지할 수 있습니다.
마티니는 앰플리튜드를 활용해 고객사가 데이터에서 인사이트를 얻고, 더 나은 의사결정을 할 수 있도록 돕고 있습니다. 데이터 환경을 구축하고 마케팅 성과를 높이고 싶다면, 지금 바로 마티니와 만나보세요.



이제 브레이즈에서 RFM 세그멘테이션을 활용할 수 있게 되었습니다.
RFM 세그멘테이션은 최근성(Recency), 빈도(Frequency), 금액(Monetary)를 기준으로 각 지표를 스코어링하고, 점수별 유저 그룹의 특성을 정의하는 세그멘테이션 방식입니다.
브레이즈의 SQL Segment Extension에서 사전 정의된 템플릿을 활용해 간편하게 사용할 수 있습니다.
RFM 세그먼트에 대한 상세한 내용은 마티니의 RFM 분석 사례 아티클에서도 확인해보실 수 있습니다.

*쿼리문에서 일부 데이터를 조정하여 기준을 변경하는 것도 가능합니다.

Custom Attribute별로 각 데이터가 차지하는 비중을 확인할 수 있는 기능이 생겼습니다.
예를 들어, ‘멤버십’ 정보를 저장한 Custom Attribute에 각 멤버십 등급별 비중을 확인하거나, 유저가 ‘구매한 카테고리 리스트’에 가장 많이 담긴 카테고리 비중을 확인하는 등의 인사이트 확인이 가능합니다.
다만, 25만 명 이상으로 유저수가 큰 경우, 샘플링된 데이터로 제공되어 실제와 오차가 발생할 수 있는 점 참고가 필요합니다.

Data Settings > Custom Attribute 메뉴로 진입하여 보고 싶은 데이터의 우측 메뉴에서 View Usage 버튼을 눌러 확인할 수 있습니다.



지난 BrazeAI 신규 기능 소개에서 BrazeAI Decisioning Studio™를 소개드렸었습니다. BrazeAI Decisioning Studio™는 유저 행동 데이터를 바탕으로 적합한 메시지, 발송시간, 개인화 등 CRM 메시지에 필요한 모든 요소를 스스로 의사결정하는 신규 기능입니다.
AI가 직접 의사결정을 내림에 따라 A/B 테스팅, 개인화 구현, 목표 최적화 등에 들이는 시간을 최소화하고, 더 높은 성과까지 기대할 수 있습니다.
이번 릴리즈 노트에는 BrazeAI Decisioning Studio™를 사용하기 위한 가이드 문서가 업데이트되었습니다. 가이드 문서에는 연동, 에이전트 활용, 리포트 확인 관련 내용이 추가되었으며, 링크에서 확인하실 수 있습니다.
앞으로 AI를 활용한 CRM 마케팅이 마케터의 업무와 필요 역량에 큰 변화를 가져올 것으로 예상되니, 미리 파악해두시면 좋을 것 같습니다.

올해 브레이즈는 WhatsApp을 비롯하여 RCS, Line등 신규 채널 추가에 힘쓰고 있습니다. 이번 업데이트에서는 새롭게 추가된 RCS, Line에 대한 클릭, 발송 등 메시지 상호작용 관련 데이터도 Currents로 데이터를 전송할 수 있도록 추가되었습니다.
특히, 한국에서는 문자 대비 비용 효율이 좋고, 보다 양방향 소통이 가능한 채널인 RCS 활용량이 증가할 것으로 기대되는데요. 브레이즈에서 RCS가 신규 기능으로 출시되고 그에 대한 데이터 연결까지 수월해져, 브레이즈를 통한 RCS 메시지가 더욱 중요해질 것 같습니다.

CRM 마케터라면 모든 캠페인에 매 번 필터링으로 특정 유저들을 타겟에서 제외하거나, Frequency에 대한 고민을 가진 경험이 있으실텐데요. 이제는 Suppression List를 활용하여 편리하게 이 고민을 해결할 수 있습니다.
Suppression List는 특정한 세그먼트를 설정하여, 해당 세그먼트는 아무런 메시지도 받지 않도록 하는 기능입니다. 기존의 베타버전에서 General Access 버전으로 정식 출시되었습니다.
Suppresion List에 특정 유저들을 의도적으로 메시지 수신 대상에서 제외하거나, 메시지의 노이지함을 막기 위해 N일 내 메시지 열어본 사람을 대상에서 제외하는 등 다양한 조건을 적용할 수 있습니다.
제로카피 개인화(Zero-copy Personalization)는 별도로 브레이즈 내에 데이터 수집 과정을 거치지 않고 즉시 개인화에 데이터를 사용하는 방법입니다. 데이터 수집 과정이 없기 때문에 개발의 편리함도 챙길 수 있고, 동시에 Datapoint나 보안 문제 등으로부터 상대적으로 자유로워질 수 있습니다.
이제 브레이즈 캔버스(Canvas)에서 CDI(Cloud Data Ingestion)를 이용하여 DW에 수집된 데이터를 브레이즈로 보내어 데이터 저장 없이 개인화에 사용할 수 있습니다.
아직은 얼리 액세스 단계로, 사용을 위해서는 리셀러를 통해 오픈 요청을 해야하는 단계이며, 상세한 사용 방법은 링크를 통해 확인하실 수 있습니다.


이런 메시지, 매일 받고 계시나요? (*아마 CRM마케터라면 직접 보내고 계실지도 모릅니다.)
지금 우리는 메시지가 넘치는 시대에 살고 있습니다. 처음부터 성가시진 않았습니다. 하지만, 어느 순간부터 우리는 이러한 CRM 메시지에 무뎌지기 시작했습니다. 언제부터 우리는 피로감을 느끼게 된 걸까요?
2021년 경부터 개인정보 보호 정책이 강화되면서 퍼포먼스 마케팅 효율이 떨어졌습니다. 그 결과, 1st-party Data(기업이 직접 수집한 고객 데이터)를 중심으로 한 CRM 마케팅이 빠르게 부상했습니다. 민첩한 스타트업부터 시작해 SMB, 대기업까지 CRM을 안하는 곳을 찾기 어려운 시대가 되었습니다.
예전에는 몇몇 주요 서비스에서만 CRM 메시지를 보냈다면, 이제는 거의 모든 앱이 하루에 한 번 이상 메시지를 보냅니다. 2021년부터 지금까지, 메시지 피로도는 이렇게 꾸준히 쌓여왔습니다.
CRM 솔루션 브레이즈(Braze)는 피로도 높은 CRM 생태계의 현 상황을 ‘고객과의 대화(Conversation)’가 아닌 ‘Digital Shouting’, 즉 ‘디지털 외침’에 가깝다고 표현했습니다. 고객과 대화를 주고 받기보다는, 기업이 일방적으로 메시지를 쏟아내고 있다는 의미죠.
실제로 Push, LMS, 카카오(Kakao) 등 기존 CRM 채널 대부분은 일방향 소통 구조에 가깝습니다. 고객이 메시지를 받은 후 취할 수 있는 행동은 ‘링크 클릭’, ‘수신 거부’, 또는 ‘무시하기’ 3가지 뿐입니다. 관심 있는 메시지라면 링크를 클릭해 상호작용할 수 있지만, 관심 없는 메시지는 무시되거나 수신 거부당할 수밖에 없습니다. 고객의 니즈를 파악하거나 피드백을 받을 방법이 없는 것이죠.
그렇다면 고객에게서 다양한 반응을 유도하며 상호작용할 수 있는 채널도 있을까요? 이 질문에 대한 대답을 한 눈에 이해하기 쉽게 표로 정리해봤습니다.

고객과 상호작용을 이끌 수 있는 채널에는 대표적으로 인앱메시지가 있습니다. 인앱메시지는 1-Button, 2-button, 고객 직접 작성 응답 받기 등 형식을 다양하게 구성할 수 있기 때문에, 고객의 다양한 반응을 받으며 양방향 소통이 가능합니다. 또한 유저가 앱에서 활동 중일 때 노출되기 때문에 고객의 여정에 자연스럽게 녹아들고, 유저는 맥락에 맞춰 즉각적으로 반응할 수 있습니다.

하지만, 인앱메시지에는 치명적인 한계가 있습니다. 바로 유저가 앱을 실행해야만 메시지를 볼 수 있다는 점입니다. 아무리 고도화된 소통이 가능한 인앱메시지를 구현하더라도, 앱을 열지 않는 유저에게는 전달조차 되지 않습니다. 그렇기 때문에 Push, LMS, 카카오톡과 같은 아웃바운드 채널에 비해 도달 범위가 현저히 좁을 수 밖에 없습니다. 특히 휴면 유저나 이탈 위험이 있는 유저에게는 사실상 무용지물이죠.
RCS(Rich Communication Services)는 차세대 문자 메시지로, SMS/LMS의 진화형으로 볼 수 있습니다. 기존 문자와 다르게 특정 응답이나 액션을 제안할 수 있죠. 쉽게 말하자면, “문자를 IAM이나 친구톡처럼 만들 수 있는 채널”이라고 보면 됩니다. 게다가 앱에 들어오지 않아도 보낼 수 있다는 점에서 IAM보다 도달력이 높기도 합니다.


위 RCS 기능을 활용한다면, 일반 문자와 달리 IAM과 친구톡처럼 다양한 응답을 받을 수 있습니다. 일방적인 CRM 채널에 피로감을 느끼는 고객이 많은 현 시점에서 쌍방향 소통이 가능한 RCS는 새로운 돌파구가 될 수 있습니다. 실제로 브레이즈에 따르면 소비자의 74%가 SMS보다 RCS로 브랜드와 소통하는 것을 선호한다고 합니다.
브레이즈가 Braze Forge 2025에서 RCS 활용 사례를 최초로 공개했는데요, 마티니 CRM팀이 직접 현장에 보고 들은 내용을 공유합니다.

브레이즈는 Create Contextual 1:1 Interactions(맥락을 고려하는 1:1 상호작용을 만들기)의 예시로 위 사례를 공유했습니다. 블러셔 쇼핑을 고민하는 고객에게 ‘크림’, ‘파우더’, ‘액상’ 중 어떤 타입 블러셔를 원하는지를 묻는 첫번째 메시지를 보냅니다. 이 때 RCS 다중 버튼을 활용하여, 고객이 필요한 옵션을 쉽게 선택할 수 있도록 유도합니다.
고객이 특정 응답을 선택하면, 응답한 내용에 기반한 두번째 메시지를 발송합니다. 고객이 크림 타입을 선택했다면, 고객이 좋아할 만한 특정 상품을 추천하는 2차 메시지를 보내는 것이죠. 고객은 이러한 과정을 통해 브랜드와 진정한 소통을 한다고 느낄 수 있습니다.
RCS, 아직 국내에서는 모든 기능을 온전히 사용할 수 있는 상태는 아닙니다. 그럼에도 불구하고, 마티니 CRM팀은 RCS를 지금, 누구보다 빠르게 시작해야 한다고 보고 있습니다. 그 이유는 크게 3가지로 나눠볼 수 있습니다.
기존 채널의 CRM 성과가 확연히 떨어지고 있습니다. 가장 대표적인 것이 Push입니다. 실제로 현업 CRM 마케터 분들과 대화를 나눠보면 Push 오픈율과 전환율이 예전만 못하다는 걸 체감하고 있다고 합니다. 그래서 많은 기업이 IAM, 카카오 친구톡/알림톡, SMS/LMS 등으로 채널 다각화를 진행하고 있습니다.
하지만, 이 채널들 역시 피로도가 점차 쌓여가고 있습니다. 기존 채널에 대한 피로도가 높아질수록, 신선한 경험을 제공하는 신규 채널에 대한 관심은 더욱 커질 수밖에 없습니다. 바로 지금이 RCS를 시작해야 할 타이밍입니다.
RCS(SMS) 기준, 일반 SMS와 발송 단가는 비슷하면서도 더 많은 글자 수와 CTA 버튼을 포함할 수 있습니다. LMS와 비교하면 발송 비용도 1/3 수준으로 경제적이죠.
그렇다면, RCS로 기대할 수 있는 성과는 어떨까요? 브레이즈는 Forge 2025에서 RCS가 SMS 대비 최대 300% 높은 응답율과 최대 250% 더 높은 전환율을 기록했다고 발표했습니다. ROI 관점에서도 RCS는 지금 고려해야 할 채널이라고 볼 수 있습니다.
현재 국내에서 RCS는 안드로이드(Android) 환경에서만 사용 가능하고, Rich Card 같은 일부 기능도 제한적입니다. 완벽한 환경은 아닌 셈이죠. 하지만 바로 이 시점이 기회이기도 합니다. 아직 많은 기업이 RCS를 본격적으로 활용하지 않는 지금, 먼저 시작하면 고객에게 새로운 경험을 제공하는 선도 브랜드로 자리매김할 수 있습니다. 선두 주자가 쌓아올린 노하우와 브랜드 인지도를 후발 주자가 따라잡는 데는 상당한 시간이 걸리기 마련입니다. RCS 생태계가 완전히 성숙하기 전, 지금이 바로 우위를 선점할 골든타임입니다. RCS 활성화의 선두주자가 되어보는 건 어떨까요?

마티니는 이미 롯데ON과 브레이즈를 통한 RCS 발송 첫 사례를 만든 경험이 있습니다. 마티니에서 제작한 RCS 템플릿으로, 현재 롯데ON에서는 실무자들이 직접 쉽게 브레이즈에서 RCS를 발송하고 있습니다. 현재는 배민상회에서 RCS로 채널 다각화를 진행하고 있습니다. 생소한 RCS도 마티니와 쉽게 시작해 보세요.



‘안녕하세요, {이름} 님’에 그치던 개인화는 발전을 거듭했습니다. 현대의 소비자들은 자신이 누구인지, 무엇에 관심이 있는지, 현재 어떤 위치에 있는지 반영하는 경험을 기대합니다. 결국, 이러한 기대를 충족하는 브랜드가 경쟁에서 우위를 점할 수 있습니다.

개인화를 위해서는 ‘개인화’를 위해 필요한 데이터가 제대로 수집되어야 합니다. 수집된 데이터는 세그먼트 구성부터 메시지에 이르기까지 다양하게 활용됩니다. 정확한 데이터가 수집될 때, 보다 효과적인 개인화가 가능해집니다.
이 때 활용하는 것이 이벤트 택소노미(Event Taxonomy)입니다. 이벤트 택소노미는 앞으로 수집할 데이터의 설계도 역할을 합니다.

개인화 플랫폼은 고객이 명시적으로 제공하는 데이터인 제로 파티 데이터(Zero Party Data)부터, 이벤트 택소노미를 기반으로 쌓인 서드 파티 데이터(3rd Party Data)에 이르기까지 다양한 고객 데이터 소스를 활용합니다.
위에서 소개한 예시 외에도 다음과 같은 데이터를 개인화 플랫폼에서 활용할 수 있습니다.
고도화된 개인화를 위해서는 과거의 데이터가 아닌 ‘현재의 데이터’가 필요합니다. 실시간 데이터 동기화, 이벤트 스트리밍, 오픈 API를 브레이즈와 결합하여 수준 높은 개인화 캠페인을 구현해 보세요.
실시간 데이터를 활용하면 다음과 같은 이점이 있습니다.

장바구니에 담긴 상품 정보를 활용하여 크로스셀링을 유도하는 인앱 메시지(IAM) 사례입니다. 유저가 상품을 장바구니에 담았을 때 즉각적으로 노출하여, 연관 상품을 함께 구매할 수 있도록 합니다. 장바구니에 담긴 상품 이름, 이미지를 비롯해 하루동안 연관 상품을 구매한 사람 수를 함께 노출하여 동조 심리를 자극합니다.

유저에게 발급된 쿠폰 정보를 활용한 캠페인 사례입니다. 실제 발급된 쿠폰 이름을 메시지에 활용하고, 소멸 시점을 함께 안내해 구매를 유도할 수 있습니다. 이와 같은 개인화 캠페인은 메시지뿐만 아니라 발송 시점에도 개인화를 활용하여 각 유저별로 쿠폰 만료일이 도래했을 때 메시지가 자동으로 발송되도록 설정할 수 있습니다.

API를 활용해 실시간으로 불러오는 데이터는 개인화에 활용할 때 강력한 효과를 발휘합니다. 고객이 위시리스트에 넣어뒀거나, 장바구니에 추가한 상품 데이터를 바탕으로 실시간 할인 정보를 제공할 수 있습니다. 실제 고객이 구매 의사를 가지고 있는 상품을 활용하고, 시간/혜택 등이 한정되어 있다는 점으로 손실회피 경향을 자극해 높은 전환 성과를 기대할 수 있습니다.

브레이즈는 조건별 개인화를 넘어, 1:1 개인화 시대를 만들어 나가고 있습니다. AI를 활용해 개별 유저에게 발송되는 메시지, 채널, 발송 시간까지. BrazeAITM와 함께 활용할 수 있는 모든 데이터를 활용해 개인화 그 이상의 개인화를 구현해 보세요.

.webp)

브레이즈는 최근 AI 기반 CRM 마케팅 개인화 서비스를 제공하는 오퍼핏(OfferFit)을 인수했습니다. 이를 통해 Braze AI Decisioning Studio 조직을 새롭게 구성하며, AI CRM으로서의 역량을 강화하고 있습니다.
올해 Braze Forge 2025에서는 이러한 변화가 더욱 명확히 드러났습니다. 신규 기능 대부분이 AI와 관련되어 있었고, 주요 세션들도 AI를 중심으로 진행되었습니다. 이러한 흐름은 CRM 마케팅 환경이 빠르게 변화하고 있음을 보여줍니다. AI를 활용한 개인화와 자동화는 이제 선택이 아닌 필수가 되고 있습니다.
그렇다면 CRM 마케터는 어떻게 AI를 효과적으로 활용하고, 성과를 극대화 할 수 있을까요? 이번 아티클에서는 Braze Forge 2025의 내용을 바탕으로, CRM 마케터의 AI 활용 전략을 살펴보겠습니다.
혹시 AI를 활용하면서 기대와 다른 결과로 인해 오히려 더 많은 리소스를 소모한 경험이 있지 않나요? 실제로 한 글로벌연구에 따르면, 약 60%의 마케터들이 AI 도입 후 생각보다 성과가 개선되지 않거나 약화되었다고 응답했습니다.
이러한 상황을 방지하려면 AI가 마케팅에서 어떤 역할을 수행할 수 있는지 명확히 이해해야 합니다. BrazeAI Decisioning Studio 리더인 George Khachatryan은 Forge 2025에서 AI의 기능을 다음과 같이 정의했습니다.

ChatGPT, Claude 등 LLM(Large Language Model)의 대표적인 방법입니다.
이탈 예상 고객을 붙잡을만한 카피 작성해 줘.
이 방법은 AI 토큰 단위로 텍스트를 이해하고 처리하며, 기존 문맥을 토대로 원하는 요구사항에 맞게 업무를 처리할 수 있습니다. 마케팅에서는 AI를 활용한 카피라이팅, 이미지 제작, 세그먼트 쿼리 작성 등이 생성형 타입의 머신러닝 형태에 해당됩니다.
브레이즈는 AI Copywriting, AI Image Generator, AI Query Builder 등의 기능을 통해 생성형 AI를 제공합니다. 추가로 SQL Segment Extensions와 Liquid Assistant 기능도 마케터가 복잡한 작업을 쉽게 처리할 수 있도록 돕습니다.
유저가 이미 수행했던 과거의 행동 데이터를 바탕으로 미래의 행동을 예측하는 방법입니다.
이 유저가 재구매를 할까?
예측을 위한 머신러닝은 '예' 또는 '아니오'처럼 명확한 답이 있는 질문에 적합합니다. "이 주식 가격이 오를까?", "내일 비가 올까?"와 같은 질문이 대표적인 예입니다. 마케팅에서는 이미 특정 행동을 수행한 유저들의 데이터를 학습합니다.
예를 들어, 과거에 이탈한 유저들과 구매한 유저들의 행동 패턴을 분석하여, 현재 유저 중 '이탈할 가능성이 높은 유저'나 '구매할 가능성이 높은 유저'를 예측합니다.
브레이즈는 이러한 예측기능을 제공합니다. Predictive Churn은 유저의 이탈 가능성을 예측하고, Predictive Events는 특정 전환 행동(구매, 가입 등)이 발생할 가능성을 예측합니다. 두 기능 모두 유저의 과거 행동 데이터를 학습하여 미래를 예측하는 방식으로 작동합니다.
패턴매칭은 유저의 행동에서 특정 패턴을 찾아내는 머신러닝 방법입니다.
메시지를 몇 시에 보내는게 좋을까?
예측과 마찬가지로 유저의 과거 행동 데이터를 분석하지만, 명확한 정답이 정해져 있지 않다는 점에서 차이가 있습니다. '예' 또는 '아니오'로 답하는 대신, "이 유저는 오후 7시에 푸시 알림을 가장 잘 확인한다"처럼 구체적인 패턴을 찾아냅니다.
마케팅에서는 전환한 유저와 행동 패턴이 유사한 타겟을 찾는 유사타겟(Lookalike) 분석이나, 비즈니스 성장을 이끄는 핵심 지표인 북극성지표를 발굴하는 데 활용됩니다.
브레이즈는 이러한 패턴매칭 기능을 Intelligence Suite로 제공합니다. Intelligent Timing은 유저별 최적의 메시지 발송 시간을, Intelligent Selection은 가장 효과적인 메시지 변형을, Channel Filter는 유저가 선호하는 채널을 학습하여 제안합니다.
사람이 아닌 AI가 의사결정을 하게 만드는 것이 목표입니다.
지금 우리는 무엇을 해야할까?
앞서 살펴본 예측, 패턴매칭, 생성형 AI는 모두 결과물을 제시하고 최종 의사결정은 사람이 내린다는 공통점이 있었습니다. 반면 의사결정형 AI는 설정된 KPI를 최적화하기 위해 스스로 판단하고 행동할 수 있습니다.
마케팅에서는 개인화와 상품 추천에 주로 활용할 수 있습니다. 어떤 유저에게 어떤 메시지를 보낼지, 어떤 제품을 추천할지, 심지어 메시지를 보낼지 말지까지 AI가 직접 결정합니다.
브레이즈는 이러한 의사결정형 AI를 여러 기능으로 제공합니다. 이번에 새롭게 공개된 AI Decisioning Studio와 AI Agent Console을 비롯해, AI Recommendation 기능을 통해 고객 데이터 기반의 AI 기반 의사결정을 실행할 수 있습니다.

그렇다면 CRM 마케터들은 어떻게 활용 수준을 파악하고, 더 적극적으로 AI를 활용할 수 있을까요? CRM 마케팅을 위한 AI 활용 전략은 크게 세 단계로 구분할 수 있습니다.
AI를 사용하지 않거나 생성형 AI만 일부 쓰는 경우
AI를 전혀 사용하지 않거나, 생성형 AI만 제한적으로 활용하는 경우 해당되는 단계입니다. 이 단계에서는 분석, 콘텐츠 생성, 의사결정의 부분에서 대부분을 사람이 직접 수행하기 때문에 작업 속도가 느립니다.
생성형 AI로 생성·예측·패턴 분석을 하지만, 최종 의사결정은 사람이 수행하는 경우
생성형 AI, 예측 모델, 패턴매칭을 활용하지만 최종 의사결정은 사람이 수행하는 단계입니다.
의사결정을 위한 분석과 실행 과정에서 효율이 크게 향상됩니다. 다만, 분석 결과를 바탕으로 한 룰 기반 개인화가 이루어질 뿐, 진정한 1:1 매칭 개인화라고 보기는 어렵습니다.
모든 의사결정을 AI 기반으로 진행하는 경우
생성, 예측 모델, 패턴 매칭에 더불어 AI의 의사결정까지 활용하는 경우 해당되는 단계입니다. 모든 유저의 개별 데이터를 바탕으로 분석하고 의사결정을 내리기 때문에, 진정한 1:1 개인화가 가능합니다.
이 단계에서는 모든 과정이 AI를 통해 자동화되어 훨씬 빠르고 유연하게 대응할 수 있습니다. 마케터는 AI가 학습하고 의사결정을 내릴 수 있도록 방향성과 전략을 제시하는 지휘자 역할을 하게 됩니다. 반복 작업에서 벗어나 더 상위 차원의 업무를 수행하며, 결과적으로 유저의 만족도를 높일 수 있습니다.

몇 년 전 '자동화'와 '개인화'는 CRM 마케팅의 패러다임을 바꾸며, 마케터의 업무 방식과 핵심 역량을 완전히 새롭게 정의했습니다. 앞으로 AI를 통해 수행할 수 있는 CRM 마케팅 업무는 더욱 다양해질 것입니다.
이는 CRM 마케팅이 비즈니스에 미치는 영향력이 더욱 커진다는 의미입니다. 따라서 마케터의 역할도 변화할 것으로 예상됩니다. 마케터는 실행 중심의 업무보다는 메시지 구성, 타겟 설정, 발송 시점 결정과 같은 전략 수립에 집중하게 될 것입니다. 주어진 리소스를 효율적으로 배분하는 역할이 더욱 중요해질 것입니다.

브레이즈는 이러한 변화에 대응하기 위해 AI 기능을 지속적으로 강화하고 있습니다. 마케팅 AI를 활용해 마케팅 업무를 효율화하고, 성과를 내는 본질에 집중하고 싶다면 지금 바로 마티니에 문의해 보세요.


사실 브레이즈에는 기존에도 CRM 업무 효율성을 높이고, 더 높은 성과를 가져오는 다양한 AI 기능들이 존재했습니다.
이번에는 기존에 존재했던 BrazeAI 기능들을 정리하겠습니다.
유저 행동 패턴에 따른 최적의 메시지 선택

Intelligence Suite는 고객의 기존 데이터를 바탕으로 패턴을 예측하여 메시지에 적용할 수 있는 기능입니다.
기존에 개별 유저들이 어떤 채널에 잘 반응하는지, 몇 시에 주로 메시지를 열어보는지 패턴을 분석합니다. 분석한 내용에 따라 ‘앱푸시(App Push)에 자주 반응 하는 그룹’ 처럼 타겟팅에 활용하거나, 개별 유저가 잘 반응 하는 시간에 메시지를 개별 발송 할 수도 있습니다.
Intelligence Suite에 포함되는 상세한 기능들은 아래와 같습니다.
유저의 행동을 예측

Predictive Suite는 유저의 기존 행동 데이터를 토대로 다음의 행동을 예측하는 기능입니다. BrazeAI에는 크게 두 가지의 예측 모델이 존재합니다.
Predictive Churn을 활용하여 이탈 예상 유저, 이탈 위험군 유저를 타겟하여 스페셜 오퍼를 제공하는 등 이탈 방지 캠페인에 활용할 수 있습니다. 반면 Predictive Events는 재구매 가능성이 높은 사람들을 타겟하거나, 카카오/문자 같은 유료채널을 구매 가능성이 높은 유저위주로 발송하여 비용 효율화에도 사용할 수 있습니다.
가장 효과적인 구매 유도 도구

상품추천 기능은 유저의 구매를 이끌어내기에 아주 효율적인 도구입니다. 다만, 상품추천을 하기 위한 엔진 개발이 마케터에게는 굉장히 어려운 일인데요. BrazeAI의 AI Recommendation을 활용하면 다양한 추천 엔진을 CRM 메시지에 활용할 수 있습니다.
상품추천은 유저의 구매 여정을 돕는 일종의 가이드 역할도 하기 때문에, CRM 자동화 캠페인에서 꼭 활용해보시길 권장드립니다.
마케팅 생산성의 극대화

브레이즈의 캠페인 셋팅 화면에서 즉시 메시지 카피를 생성하고 적용할 수 있습니다. 언어 뿐만 아니라 대략적인 문장 길이와 메시지 톤까지 설정할 수 있어 활용도를 높일 수 있습니다.
브레이즈 대시보드 내에서 DALL·E 3를 활용하여 이미지를 생성할 수 있습니다.
이미지 생성을 위한 가이드를 입력한 이후, 생성된 이미지 내에서 원하는 이미지를 선택하여 메시지에 즉각 활용할 수 있습니다.
기존 유저에게 발송되는 CRM 메시지의 특성상, 잘못된 메시지 발송의 리스크는 타 마케팅 대비 더 크다고 볼 수 있습니다.
그러나 BrazeAI의 Content QA를 활용하면 오탈자 검수, 문법 체크, 문체 조정 등 메시지에서 발생할 수 있는 리스크를 관리할 수 있습니다.
Liquid는 브레이즈에서 다양한 개인화를 가능하게 하는 효과적인 도구입니다. 그러나 처음에는 배우고 활용하기 어렵다는 문제가 존재하는데요. AI Liquid Assistant를 활용하면 자연어로 질문하고, 완성된 Liquid 구문을 받을 수 있습니다.
브레이즈의 Query Builder는 재구매 주기 파악, 연관 상품 분석 등 CRM 캠페인을 위한 분석을 확장해주는 유용한 도구입니다. SQL Query Builder에서도 AI를 활용하여 원하는 분석을 위한 쿼리를 제작할 수 있습니다.
Segment Extension은 Query Builder와 유사하게 쿼리문을 작성해서 활용합니다. Query Builder가 분석을 위한 도구라면, Segment Extension은 쿼리의 결과에 해당하는 유저들을 바로 캠페인의 타겟으로 활용할 수 있게 해줍니다.
AI SQL Generator를 활용하여 SQL Segment Extensions 활용을 위한 쿼리문을 간편하게 제작할 수 있습니다.
다음 콘텐츠에서는 CRM 마케팅에서 AI가 어떤 식으로 활용될 수 있을지, Forge 2025에서 공개된 내용을 바탕으로 개념을 정리하고 활용 사례를 공유드리고자 합니다.

.png)

마티니는 Braze팀의 공식 초청을 받아 지난 9월 28일부터 10월 1일까지, 샌프란시스코에서 열린 forge-2025에 참석했습니다.
Braze Forge는 매년 전 세계 마케터와 CRM 전문가들이 모이는 Braze의 대표 글로벌 이벤트로, 최신 프로덕트 업데이트와 실무 중심의 CRM 마케팅 인사이트가 공유되는 자리입니다. 이번 2025년 행사에서 가장 주목받은 키워드는 바로 BrazeAI였습니다.
현장에서는 BrazeAI에 새롭게 추가된 기능들을 바탕으로, 네트워킹 현장 곳곳에서 신규 기능에 대한 열띤 논의가 이어졌는데요. 이번 글에서는 Braze Forge 2025에서 공개된 BrazeAI의 주요 신규 기능을 자세히 살펴보겠습니다.
AI가 주도하는 마케팅 의사결정
.webp)
이번 Forge에서 공개된 신규 AI 기능 중 가장 큰 주목을 받은 기능은 BrazeAI Decisioning Studio입니다. AI를 활용해 생성, 예측 등에 그치지 않고 스스로 ‘의사결정’까지 가능하게 합니다.
기존의 자동화, 개인화는 결정적인 한계가 있었습니다. 모든 의사결정을 사람이 직접 내려야 했기 때문입니다. A/B 테스트를 반복하고, 세그먼트별로 전략을 설계하고, 타이밍과 메시지를 조율하는 과정은 많은 시간과 리소스를 소모합니다. 게다가 계속 누적되는 유저 행동 데이터를 실시간으로 반영하기란 사실상 불가능했습니다.
하지만 BrazeAI Decisioning Studio는 이 한계를 넘어섭니다. 유저의 행동 데이터를 기반으로 발송 시간, 할인율, 개인화 요소 등 CRM 마케팅의 핵심 의사결정을 AI가 실시간으로 처리합니다.
기존 규칙 기반 개인화를 넘어 완벽한 1:1 개인화까지 가능해지면서, 브레이즈는 CRM 마케팅에서 더욱 강력한 도구로 자리잡게 될 것으로 예상됩니다.
언제든지 조언을 구할 수 있는 AI 기반의 CRM 마케팅 파트너

BrazeAI Operator는 챗봇 형태로 구성이 되어 있으며, Braze 대시보드 내 어디에서든 자유롭게 사용이 가능합니다. 자연어로 요구사항을 입력하면, BrazeAI에서 그에 대한 응답을 제공하고 대시보드내 실제 반영까지 가능합니다.
BrazeAI Operator를 활용하는 다양한 예시는 다음과 같습니다.
BrazeAI Operator의 가장 큰 차별점은 AI가 제안만 하는 것이 아니라, 대시보드 내에서 직접 실행까지 연결된다는 점입니다. 지금 AI의 의견을 반영하여, 바로 고객에게 적합한 메시지를 기획해보세요.
자사 비즈니스 데이터 기반의 맞춤형 CRM AI

BrazeAI Agent Console은 마케터가 직접 용도에 맞게 AI를 생성, 관리, 배포할 수 있는 브레이즈 내 플랫폼입니다. 별도의 엔지니어링 기술이 없어도 BrazeAI Agent Console을 이용하면 몇 번의 클릭 만으로 AI를 생성하고, 학습시킬 수 있습니다.
이 기능은 마케터가 기술적 배경 없이도 AI를 생성하고 자사 데이터로 학습시킬 수 있습니다. 또한 기존 AI 기능처럼 프롬프트에 의존하는 단순 챗봇이 아닌, 반복적이고 복잡한 업무를 자동으로 수행하며 전략적 업무까지 처리할 수 있을것으로 기대됩니다.
전체 고객 경험을 설계하는 AI

이제 Canvas내에서도 AI를 활용한 Canvas Step을 활용할 수 있습니다. Canvas의 Agent Step은 앞서 설명한 BrazeAI Agent Console을 이용하여, AI가 직접 의사결정하고 컨텐츠를 생성할 수 있는 Step입니다.
Agent Step은 크게 두 가지 용도로 활용 될 수 있습니다.
의사결정:
기존 유저 데이터와 문맥을 읽고, 직접 의사결정을 통해 해당 유저를 Canvas내에서 스코어링합니다. 해당 스코어를 바탕으로 유저를 다음 Step으로 보내거나, Canvas에서 Drop시킬 수 있습니다.
개인화:
개별 유저의 메시지 상호작용을 분석하여, 개인화된 메시지를 구성할 수 있습니다.
브랜드의 톤&매너를 준수하는 더욱 강화된 생성형 AI

AI 기반 카피라이팅 활용이 늘어나면서, 무작위한 AI 기반의 콘텐츠 형성이 아닌 브랜드 가이드라인을 준수한 콘텐츠 생성이 중요해지고 있습니다. 브레이즈는 이를 해결하기 위해 브랜드 가이드라인 기반 프롬프트 사전 설정 기능을 출시했습니다.
많은 마케터들이 AI를 사용하면서 겪는 공통적인 불편함이 있습니다. "AI가 생성한 문구가 우리 브랜드 느낌이 아니라서 결국 다시 써야 한다"는 점입니다. 프롬프트를 매번 다르게 입력하거나, 생성된 결과를 일일이 검토하고 수정하는 일은 오히려 업무를 늘립니다.
Braze AI의 Brandguideline 기능을 통해 브랜드 가이드라인을 미리 설정해두면, AI가 브랜드에 맞는 톤으로 메시지를 작성해줍니다. 또한 자주 쓰는 AI엔진을 Braze와 연동하여 더 쉽고 간편하게 수정 시간을 줄이고 즉시 사용 가능한 메시지를 얻을 수 있습니다.
해당 기능은 현재 Global Access 단계로, 브레이즈 대시보드에서 바로 사용할 수 있습니다. 지금 Brand Guideline를 사용하여 더 쉽고 간편하게 CRM 메시지를 기획해보세요.

Braze는 Forge 2025에서 AI로 인해 마케터 역할이 진화될 것이라고 의견을 밝혔습니다.
AI 시대에서 마케터의 역할은 축소되는 것이 아니라 확장되며, 기계적인 업무에서 벗어나 전략적 지휘자로서 더 본질적인 업무에 집중하게 될 것입니다. 따라서 단순한 가속화를 넘어 업무 방식의 근본적 변화가 필요하고 부가가치가 낮은 업무는 자동화되지만, 전략 수립과 품질 관리는 여전히 인간의 영역으로 남을 것이다.
이처럼 BrazeAI를 포함한 AI 기술들이 마케팅 실무에 깊숙이 스며들며, 마케터는 단순 작업을 자동화 하여 반복 작업으로부터 자유로워질 수 있을것으로 기대됩니다.
AI 시대의 마케터는 전략적 지휘자로서 전략 수립, 고객 경험 설계, 브랜드 일관성 유지 같은 고차원적 업무에 집중하게 될 것입니다. 결국 AI는 마케터를 대체하는 것이 아니라, 더 본질적인 가치를 만드는 일에 몰입할 수 있도록 돕는 도구가 될 것입니다.
다음 글에서는 Forge 2025에서 새롭게 공개된 신규 BrazeAI 기능 외에도 기존에 존재하던 AI 기능들에 대한 글로 찾아뵙겠습니다.



Landing Page 기능이 베타 버전으로 배포되었습니다.
브레이즈 Landing Page를 활용하여 랜딩페이지 제작뿐만 아니라 랜딩페이지 내 유저의 상호작용 데이터를 바로 브레이즈에 수집할 수도 있어, 다양한 시나리오를 통해 전환과 인게이지먼트를 이끌어낼 수 있습니다.
Landing Page와 관련하여 주목할만한 점은 아래와 같습니다.

이제 CDI(Cloud Data Ingestion) 기능을 활용하여 Amazon S3와도 연결이 가능해졌습니다.
CDI를 활용하면 별도 개발 없이도 DW(Data Warehouse)의 데이터를 Braze로 전송하여, 보다 민첩한 데이터 활용이 가능해집니다. 수집할 데이터에 변동사항이 잦거나, 개발 리소스 확보가 어려운 고객사에서 특히 유용하게 사용될 수 있습니다.
이제 Canvas에서 시나리오별 템플릿(Template)이 제공됩니다.
템플릿을 활용하여 캠페인 기획 및 세팅에 소요되는 시간을 절약할 수 있고, 템플릿을 기반으로 아이디어를 확장시킬 수도 있습니다.
아직 Canvas를 활용하지 않고 있거나, Canvas가 익숙하지 않으신 분들은 Canvas 템플릿으로 시작해보셔도 좋을 것 같습니다.


Canvas에서 변경사항들을 트래킹할 수 있는 편의기능이 추가되었습니다.
Canvas는 유저 저니에 맞춰 CRM 시나리오를 구현하는 기능으로 다양한 시나리오들을 구성할 수 있습니다. 그만큼 메시지를 구성하는 스텝들도 많아져, 수정사항 발생 시 히스토리 확인에 어려움이 있으셨을텐데요.
이제는 대시보드에서 Changes Since Last Viewed 버튼을 눌러 그 변경 기록들을 확인해볼 수 있습니다.


.webp)
마케터들이 가장 두려워는 지표가 있습니다. 바로 '이탈률'입니다. 지난달 대비 이탈률이 또 올랐다면, 많은 담당자들은 급하게 이탈 고객 복귀(윈백) 캠페인을 기획하거나 할인 쿠폰을 발송하는 등 ‘발등에 불 떨어진’ 캠페인을 진행하곤 합니다.
하지만 문제는, 이탈률 상승을 확인하는 시점에는 이미 고객들이 떠난 상태라는 점입니다. 사후 분석으로는 무엇이 잘못되었는지 파악할 수 있지만, 이미 이탈한 유저를 되돌리기는 어렵습니다.
.webp)
실제로 한 글로벌 연구에 따르면, 신규 고객 확보 비용은 기존 고객 유지 비용보다 5~7배 더 많이 소요된다는 연구 결과가 있습니다. 반대로 생각해보면, 고객 이탈을 미리 감지해 고객 유지율을 단 5%만 높여도 25%에서 95%까지 수익을 증가시킬 수 있다는 의미입니다.
그렇다면 고객이 떠나기 전에 이런 신호를 조기에 포착하고, 장기 고객으로 전환시킬 수 있는 방법은 무엇일까요? 이 아티클에서는 이탈 예방을 위해 주목해야 할 지표와 행동 패턴, 그리고 고객 리텐션을 높이는 실무 전략을 알아보겠습니다.
먼저 고객의 이탈을 방지하기 위해서는 이탈의 본질을 제대로 파악하는 것이 중요합니다. 이탈에는 두 가지 일반적인 유형이 있습니다.
결제 오류나 시스템 장애로 인한 비자발적 이탈은 마케터가 통제하기 어렵습니다. 하지만 고객 행동 데이터에서 나타나는 자발적 이탈 신호들의 패턴들(로그인 감소, 사용량 감소, 메시지 참여도 하락 등)은 충분히 사전에 감지할 수 있습니다. 그렇다면 많은 팀들은 왜 여전히, 고객이 보내는 신호를 놓치고 있는것일까요?
.webp)
바로 '이탈률'이라는 결과에만 집중하기 때문입니다.
대부분의 마케터들은 해당 지표에 대한 뒤늦은 대응으로 이미 떠난 고객에게 이탈 고객 복귀(윈백) 캠페인 예산을 쓰고, 할인 쿠폰을 보내고, 이메일을 발송하는 일만 반복하곤 합니다.
하지만 진짜 중요한 건 고객이 떠나기 전 보이는 행동 변화의 패턴을 먼저 읽는 것입니다. 고객 이탈은 갑작스러운 결정이 아니라 고객이 보내는 여러 신호들을 놓친 결과이기 때문입니다.
'자발적 이탈 신호'든 '비자발적 이탈 신호'든, 이를 방치하면 팀 효율성, 캠페인 성과, 브랜드 건강 모두에 부정적인 영향을 미칠 수 있기 때문에, 데이터에서 '무엇을' 봐야 하는지, '어떻게' 대응해야 하는지만 알면 충분히 막을 수 있습니다. 그렇다면 어떤 지표로 이탈 직전 신호를 포착할 수 있을까요?
글로벌 CRM 솔루션 브레이즈는 모든 이탈 방지 모델에 아래 주요 신호들이 필수적이라고 강조합니다.
이런 신호들을 데이터로 포착하기 위해서는, 명확한 행동 지표 설정이 필요합니다. 구체적으로는 '유지 및 이탈 지표', '참여 및 행동 신호', '경험 및 만족도 측정 항목' 세 가지 영역으로 나눌 수 있습니다.
.webp)
이런 부정적인 신호들을 지표를 통해 관리하면, 실제 유저 이탈의 문제가 발생했을때 미리 감지하여 대처할 수 있습니다.
.webp)
문제를 인식했다면 이제 이탈 예정 유저에게 어떤 전략을 펼칠지 고민해야 합니다. 이탈 방지의 핵심은 속도와 정확성입니다. 브레이즈를 사용하면 이탈 신호를 자동으로 감지하고 즉시 대응할 수 있습니다.
브레이즈는 실시간 세분화와 개인화된 고객 여정을 통해 단순한 문제 발견을 넘어 고객 라이프사이클 전반에 걸쳐 연결된 경험을 제공합니다. 실제로 이런 전략이 어떻게 작동하는지, 위 사례를 통해 브레이즈의 핵심 기능들을 바탕으로 구체적인 이탈 방지 방법을 살펴보겠습니다.
.gif)
브레이즈의 Dynamic Segment 기능을 사용하면 고객 행동에 기반한 그룹을 쉽게 만들 수 있습니다. '제주도 여행 검색 후 3일간 미접속', '장바구니 3회 이상 포기', '푸시 오픈율 30% 이하 하락' 같은 구체적인 위험 신호별로 고객 그룹을 자동 생성할 수 있습니다. 이런 세그먼트는 실시간으로 업데이트되어 위험 고객을 놓치지 않습니다.
Braze Predictive Suite를 통해, 각 고객이 언제쯤 떠날지 미리 예측 가능한 시스템을 구축할 수 있습니다. 고객의 검색 패턴, 접속 간격, 참여도 변화를 종합 분석해 이탈 위험도를 점수로 매깁니다. 예를 들어 7일간 여행 상품을 검색하다가 갑자기 접속이 끊긴 고객에게 높은 이탈 위험 점수를 부여해 우선 대응 대상으로 분류합니다.
.webp)
Canvas 기능을 통해 마케터가 이메일, 푸시, SMS, 앱 내, 웹 등 다양한 채널에서 메시지를 효과적으로 전달할 수 있습니다. 접속이 끊긴 고객에게 첫 번째는 푸시로 여행 상품을 추천하고, 반응이 없으면 이메일로 할인 쿠폰을 보내고, 그래도 반응이 없으면 SMS로 마지막 어필을 하는 단계적 접촉 시나리오를 브레이즈 Canvas로 자동화할 수 있습니다. 각 단계에서 고객이 반응하면 여정을 종료하도록 설정하면 됩니다.
브레이즈는 Liquid 템플릿, Connected Content, AI 기반 아이템 추천 등 다양한 개인화 도구를 지원합니다. 이런 기능을 통해 브랜드는 각 사용자의 상황, 행동, 선호도에 맞춰 콘텐츠를 맞춤화하여 재참여 및 장기 고객 유지 가능성을 높일 수 있습니다.
예시로, "안녕하세요 고객님" 대신 "지난번 관심 보이신 제주도 여행 패키지에 특가 혜택이 추가되었어요"처럼 실제 검색 이력을 반영한 메시지를 보낼 수 있습니다.
이탈 방지 전략은 고정되어 있지 않기 때문에, 다양한 채널을 통해 어떤 메시지가 더 효과적인지 확인하고 계속 개선해야합니다.
"지금 예약하면 30% 할인" vs "내일까지만 특가" 같은 메시지 톤 차이나, 오전 9시 vs 오후 7시 발송 시간, 할인율 차이를 A/B 테스트로 비교 분석합니다. 마티니에는 이런 최적화를 통해 검색 후 이탈 고객의 재참여와 전환을 이끌어낸 경험이 있습니다.
결국 핵심은 고객의 미세한 행동 변화부터 복합적인 이탈 신호까지 브레이즈 같은 하나의 플랫폼에서 통합 분석하고, 개인별 맞춤 대응 전략을 자동 실행해야한다는 점입니다. 마티니는 국내 브레이즈 공식 파트너사로 이런 예측 모델 구축부터 크로스채널 캠페인 최적화까지 체계적으로 지원하고 있습니다.
.webp)
고객의 이탈 신호를 놓치지 않으려면 단편적인 대응이 아닌 통합 시스템이 필요합니다. 모든 고객 데이터를 하나로 연결하고, 위험 신호를 실시간으로 감지하며, 적합한 시기에 개입할 수 있는 구조를 만들어야 합니다.
이를 위한 통합 시스템 구축 방법으로는 먼저 고객 데이터의 통합(중앙화)를 추천드립니다. 행동 신호, 참여 내역, 지원 상호작용, 제품 사용 데이터를 통합된 고객 뷰로 연결해야 실시간 대응이 가능합니다. 그다음에는 위험 고객군 파악을 통해 지난 14일간 미참여 유저나 취소 페이지 방문 후 이탈하지 않은 고객 등을 자동으로 분류할 수 있는 시스템이 있어야 합니다.
하지만 가장 중요한 것은, ‘실제로 이탈이 발생하는것을 막기 위한’ 신속한 대응입니다. 로그인 실패나 장바구니 포기 같은 이탈 신호가 나타나는 즉시 자동화된 재참여 여정이 시작되어야 합니다. 또한 목표 달성을 위한 단계별 계획 수립을 통해 온보딩 중단 유저와 기존 고객 이탈에 각각 다른 접근법을 적용해야 합니다.
이런 체계적인 이탈 방지 시스템을 구축하려면, 브레이즈 같은 전문 플랫폼 도입을 권장합니다. 실시간 고객 분석, 여러 채널을 통한 메시지 발송, 이탈 예측 기반 대응을 수작업으로 처리하기엔 한계가 있기 때문입니다. 자동화된 시스템으로 효과적인 고객 유지 전략을 실행할 수 있습니다.


북극성 프레임워크는 단일 지표인 북극성 지표를 기반으로 한 프로덕트 관리 모델로, 고객이 프로덕트에서 얻는 가치를 가장 잘 나타냅니다. 북극성 지표는 좋은 제품 전략 프레임워크지만, 오해하거나 잘못 사용하면 팀의 방향성이 틀어질 수 있습니다. 따라서 지표를 올바르게 설정하는 것이 매우 중요합니다.
모든 프로덕트에는 북극성 지표가 필요합니다. 북극성 지표는 비즈니스에 더 나은 방향성을 제시하고, 명확한 우선순위를 설정하고, 리소스를 절감하는 데 도움이 되기 때문입니다.
이번 아티클에서 북극성 지표란 무엇이며, 좋은 북극성 지표를 설정하기 위해서 어떤 것을 고려해야 하는지 알아보세요.

북극성 지표는 프로덕트의 성패를 측정하는 핵심 척도입니다. 이 지표는 프로덕트 팀이 해결하려는 고객의 문제와 이를 통해 얻고자 하는 수익의 관계를 정의합니다.
특히, 북극성 지표를 통해 다음과 같은 내용을 확인할 수 있습니다.
많은 기업에서 프로덕트 팀의 성공은 비즈니스에 미치는 영향이 아닌, 얼마나 많은 일을 하느냐에 따라 결정됩니다. 하지만 ‘임팩트’ 중심의 문화가 없다면 비즈니스의 방향에 영향을 미치기 어렵습니다. 북극성 지표가 없다면 프로덕트 중심으로 성장하는 기업이 되기 어렵습니다.

북극성 지표는 프로덕트 내 고객 행동에 대한 깊은 이해에서 비롯되어야 합니다. 고객의 ‘아하 모먼트’를 찾는 것도 비슷한 맥락입니다. 고객이 유입 초기 프로덕트에 머무는 순간을 찾았다면, 효과적인 북극성 지표를 찾았다고 할 수 있습니다.
즉, ‘DAU(Daily Active Users)’ 또는 ‘회원가입 수’와 같은 지표는 좋은 북극성 지표가 될 수 없습니다. 일회성으로는 유용할 수 있지만 고객이 프로덕트에 대해 무엇을 중요하게 생각하는지는 알 수 없기 때문입니다. 프로덕트 팀에서 느끼는 고객 가치를 북극성 지표와 연결하지 못한다면, 비즈니스는 잘못된 방향으로 흘러갈 수 있습니다.

북극성 지표를 잘 설정했다면, 그 지표만 보더라도 누구나 프로덕트가 어떤 가치를 추구하는지 쉽게 이해할 수 있어야 합니다. 북극성 지표는 단순한 숫자가 아니라 기업의 전략과 비전을 한눈에 보여주는 역할을 합니다. 조직 내부에서는 팀과 부서가 같은 목표를 바라보도록 돕고, 외부에서는 기업이 궁극적으로 어떤 문제를 해결하고자 하는지를 설명하는 공용 언어가 될 수 있습니다.
예를 들어 여행 플랫폼에서 ‘재방문 고객 비율’을 북극성 지표로 설정했다면, 플랫폼이 일회성 예약을 넘어 장기적으로 고객 경험을 개선하는 전략을 갖고 있다는 점을 확인할 수 있습니다. 이처럼 좋은 북극성 지표는 프로덕트가 만들고 있는 핵심 가치를 드러내야 합니다.

좋은 북극성 지표는 성공의 선행 지표가 됩니다. 월별 매출이나 사용자당 평균 매출(ARPU)과 같은 후행 지표는 프로덕트의 영향력을 설명하는 지표가 되기 어렵습니다. 이 지표는 매출을 예측하기보다는 과거에 무슨 일이 일어났는지를 파악하는 지표입니다.
적합한 북극성 지표를 선택하는 첫 번째 단계는, 비즈니스가 어떤 ‘게임’을 하고 있는지 파악하는 것입니다. 여기서 게임이란 ‘핵심 고객 참여 모델’을 의미합니다. Amplitude(앰플리튜드)에서 프로덕트에 대한 연구와 매달 1조 개 이상의 행동 데이터를 분석한 결과, 핵심 고객 참여 모델은 다음 중 하나로 분류될 수 있습니다.
프로덕트 팀은 위의 3가지 중 하나의 모델을 결정해야 합니다. 이는 프로덕트 전략을 수립하고, 좋은 북극성 지표를 정의하는 첫 번째 단계입니다.

위의 표는 이 위의 3가지 모델 중 하나를 채택한 기업 사례입니다. 다만, 같은 모델을 채택하고 있더라도 기업마다 고유한 프로덕트 전략을 가지고 있기 때문에 북극성 지표는 서로 다를 수 있습니다.

앰플리튜드를 활용하면 북극성 지표를 실시간으로 트래킹할 수 있습니다. 북극성 지표를 활용하면 팀 내에서 보다 가치 있는 커뮤니케이션이 가능합니다. 북극성 지표를 찾고, 구현하기 위해서는 프로덕트 팀이 단순 업무 상태 관리에서 벗어나, 보다 프로덕트에 깊이 몰입하고 아이디어를 공유하는 데 집중할 수 있습니다.

Braze는 고객 경험을 더 풍부하게 만들고, 마케터가 보다 효율적으로 CRM 캠페인을 운영할 수 있도록 꾸준히 프로덕트를 발전시키고 있습니다. 마티니는 브레이즈의 공식 파트너사로서, 지난 한 달 간 브레이즈에서 업데이트 된 기능과, 새롭게 공유된 소식을 가장 빠르게 전달합니다.
앞으로도 마티니 블로그와 링크드인, 인스타그램을 통해 브레이즈 업데이트 소식을 가장 먼저 만나보세요.
현재 얼리액세스 단계인 Canvas Context Step에서의 Date Type 데이터 사용 시, 자동으로 Timezone은 UTC로 적용됩니다.
우리나라는 UTC와 9시간 시차가 발생하여, 저장한 데이터에 따라 날짜가 바뀌어버리는 경우가 발생할 수도 있습니다. 따라서 Liquid를 통해 timezone을 설정하고 사용할 것을 권장합니다.
Timezone 설정 예시
사전 알람 신청한 A이벤트가 {{canvas_entry_properties.${event_start_date} | time_zone: 'Asia/Seoul' | date: "%Y-%m-%d %H:%M"}}에 시작돼요!
시간 계산을 위한 Liquid 예시
{% assign new_start_date{{canvas_entry_properties.${event_start_date} | date:'%s" | minus: 32400 %}

{{context.${example_variable_name}}}와 같은 형식으로 사전 저장된 Step을 호출할 수 있습니다.
Segment Funnel Statistics를 통해 유저의 Funnel별 전환율을 확인할 수 있게 업데이트 되었습니다.
Segment 생성 또는 Campaign의 Target Audience에서 타겟 설정 시 각 필터를 걸 때마다 전환율을 확인할 수 있습니다.

기존에는 단순 모수만 표기되어 전환율/이탈율 확인에 불편함이 있었는데요, 이번 업데이트로 필터별 전환율/이탈율 확인이 훨씬 수월해졌습니다.
더불어 이번 업데이트로 Segment 기능은 단순 타겟팅을 위한 용도 외에도 Funnel별 전환율을 확인하기 위한 용도로도 사용될 수 있습니다. 특히, 모수가 큰 필터부터 작은 필터까지 순서대로 걸면 Funnel 전환율 확인에 더욱 용이할 것 같습니다.
/campaigns/details Endpoint는 캠페인의 상세 정보를 불러올 수 있는 API입니다.
이 API를 사용하여 아래 정보들을 불러올 수 있습니다.

이를 통해 현재 운영 중인 캠페인 현황을 확인하거나 히스토리를 파악하기에 용이한데요.
위 이미지와 같이 우리 서비스가 보내고 있는 모든 메시지들을 일괄 관리할 수 있습니다. 여기에 이번 업데이트로 푸시 이미지 정보도 함께 불러올 수 있게 되었습니다.
푸시 이미지는image_url, large_image_url object를 통해 불러올 수 있습니다.

Braze 공식 문서에서 BrazeAI를 활용한 Use Case 아티클이 신규 게재되었습니다.
BrazeAI는 AI를 통해 유저 이탈/전환을 예측, 상품 추천, 발송 타이밍 개인화, 실험 변수의 개인화된 적용 등 다양한 기능들을 제공하고 있습니다.
이번에 추가된 Use Case는 아래에서 살펴볼 수 있습니다.
*본 기능은 현재 베타 버전입니다.
MCP(Model Context Protocol)은 AI 에이전트가 다른 플랫폼과 데이터를 연결하기 위한 프로토콜입니다.
이번 업데이트로 Braze에서 MCP 서버를 제공하여, AI로부터 Braze의 데이터를 열람하고, 분석을 요청할 수 있게 되었습니다.

MCP를 통해 Braze와 AI 에이전트를 연결하면, 아래와 같은 분석들이 가능해질 것으로 보입니다.


현대의 소비자들은 관심 분야, 살고있는 지역, 사용하는 언어 등을 기반으로 개인화된 경험을 하는 데 익숙해져 있습니다. ‘안녕하세요, {이름} 님’에 그치는 수준의 개인화로는 더 이상 소비자들을 설득할 수 없습니다. 결국, 더 수준높은 개인화 경험을 제공하는 브랜드만이 경쟁에서 살아남을 수 있습니다.
브랜드가 진정으로 고객과 소통하고 장기적인 충성도를 높이기 위해서는 모든 채널에서 일관되게 개인화된 경험을 제공해야 합니다. 바로 여기서 ‘개인화 엔진(Personalization Engine)’이 필요합니다. 개인화 엔진은 실시간으로 고객 행동 데이터를 분석하고, 예측 하여 개인 수준에서 메시지와 경험을 커스터마이징합니다. 높은 목표를 가진 브랜드의 경우 이러한 확장 가능한 개인화는 전략적으로 필수적입니다.
이번 아티클에서 개인화 엔진이 무엇이고, 어떻게 작동하며 고객 참여를 이끌어 내는데 어떻게 도움이 되는지 자세히 알아보세요.

개인화 엔진은 기업이 고객 데이터를 수집하고 분석하여 개인화된 고객 경험을 만드는 데 사용하는 소프트웨어입니다. 기업은 인공지능(AI)을 기반으로 한 개인화 기능이 내장된 고객 참여 플랫폼을 개인화 엔진으로 활용할 수 있습니다.
일반적으로 개인화 엔진은 구매 이력, 웹사이트 또는 앱 상호작용과 같은 행동 정보와 함께 인구 통계 데이터, 브랜드 충성도, 고객 서비스 또는 영업과 같은 다른 부서의 정보를 수집합니다. 개인화 엔진이 수집하는 데이터가 더 포괄적이고 고품질일수록 해당 데이터를 사용하여 개인화된 메시지를 더 정확하게 전달할 수 있습니다.
개인화 엔진은 유저 행동 데이터를 지속적으로 수집하고 학습합니다. 개인화 엔진은 학습한 데이터를 바탕으로 다양한 정보를 제공합니다. 예를 들어, 특정 고객의 구매 시점을 예측한 정보를 바탕으로, 마케터가 적시에 구매를 유도하는 메시지를 보낼 수 있도록 돕습니다. 또는 고객이 언제 이탈할지 예측하여 고객이 이탈하지 않고 머물도록 유도하는 메시지를 보낼 수도 있습니다.

인공지능을 활용하면 개인화 엔진의 복잡한 프로세스를 자동화하여 대규모의 개인화가 가능합니다. 예를 들어, 브레이즈(Braze)의 AI 상품 추천은 인공지능을 사용하여 각 고객의 구매 이력과 개별 속성을 기반으로 한 맞춤형 제품을 추천합니다. 더불어 추천 내역은 캠페인에 통합되어, 브랜드가 각 고객에게 가장 관련성 높은 제품이나 콘텐츠를 제공할 수 있도록 도와줍니다.
마케터는 브레이즈 개인화 경로(Personalized Path)와 같은 기능을 통해 개별 고객이 참여할 가능성이 가장 높은 콘텐츠를 기반으로 메시지 콘텐츠, 크리에이티브, 채널 또는 오퍼를 간단한 토글로 자동으로 조정할 수 있습니다.
다음은 개인화 엔진을 사용했을 때의 주요 장점입니다.

고객이 구매할 확률이 높은 제품을 적극적으로 추천해, 수익을 극대화해보세요.

이메일, 문자 메시지와 같은 비즈니스 플랫폼부터 인앱 메시지(IAM), 푸시(Push) 알림 등 플랫폼 간 유기적인 연결을 통해 메시지의 도달 가능성을 높이는 것은 중요합니다. 하지만 여러 채널로 메시지를 보내는 것보다 얼마나 관련있는 메시지를 제공하는지가 훨씬 중요합니다. 위치 기반 푸시 알림이나 관심사 기반 인앱 메시지가 적절한 시점에 제공될 때 더 강력한 감정적 연결을 형성하고 더 나은 성과를 만들 수 있습니다.

개인화 엔진은 적절한 개인화 도구와 함께 활용되어 고객 데이터를 수집, 분석할 뿐만 아니라 지속적으로 성과를 추적합니다. 즉, 특정 데이터가 필요한 시점에 해당 데이터가 최신 상태로 유지되고 있으므로 의사결정을 내리고 계획을 조정하는 것이 훨씬 쉬워집니다. 최신 데이터를 기반으로 캠페인을 구성하면서, 더 관련성이 높은 메시지를 구성할 수 있습니다. 더불어 이 모든 과정을 빠르고 효율적으로 구현할 수 있습니다.
마케팅 조직의 주요한 불만 중 하나는 각 팀이 각기 다른 데이터와 목표를 기반으로 일하고 있다는 점입니다. 개인화 엔진은 모든 데이터를 고객 참여 플랫폼에 통합해 다양한 캠페인을 위해 활용할 수 있도록 합니다. 이를 통해 보다 각 팀의 프로세스를 일원화하고, 이는 곧 고객의 일관된 경험으로 이어집니다.
AI와 자동화를 통해 수작업으로 하던 과정을 대규모로 한 번에 처리할 수 있습니다. 실시간 데이터를 빠르게 처리하는 이 기능은 개인화 엔진이 가진 가장 큰 장점 중 하나입니다.

개인화를 활용하면 구매를 유도할 수 있는 맞춤형 메시지를 구성할 수 있습니다. 위와 같이, 고객이 확인한 상품, 고객의 이름, 고객이 가지고 있는 쿠폰 등의 정보를 활용해 맞춤형 메시지를 구성해 보세요.
고객이 스스로 이해했다고 느낄 때, 더 오래 머물 가능성이 높아집니다. 개인화 엔진은 브랜드가 각 사용자에게 적합한 직관적인 고객 여정을 만들 수 있도록 돕습니다. 검색, 구매, 기기 간 상호작용 등 모든 고객 여정에서 관련성 높은 콘텐츠를 제공합니다.
자동화를 통해 고객 여정의 주요한 순간에 개인화 경험을 고도화할 수 있습니다. 개인화 엔진과 통합 도구를 활용해 보세요. 예를 들어, 브레이즈의 개인화 경로를 사용하면 마케터는 고객의 참여를 유도할 수 있는 메시지, 크리에이티브와 채널을 결정할 수 있습니다.

코드를 작성할 필요 없이, 캔버스(Canvas)를 활용하여 높은 반응을 이끌어낼 수 있는 역동적인 고객 여정을 구성해 보세요.
마케터는 ‘예측’을 통해 적절한 시점에 행동을 취하고 결과를 더 유리한 방향으로 전환할 수 있습니다. 브레이즈의 Predictive Suite를 사용하면, 브랜드는 이탈 위험이 있는 사용자 또는 핵심 행동을 취할 가능성이 가장 높은 사용자를 자동으로 식별하여 참여를 유도할 수 있습니다.
개인화 엔진은 데이터를 더 많이 활용하고, 더 고도화된 전략을 사용하고, 더 효율적으로 일할 수 있도록 돕습니다. 예측 기반의 추천부터, 동적 콘텐츠와 AI 기반 고객 여정 오케스트레이션(Orchestration)까지. 속도나 규모에 구애받지 않고 아이디어를 실행할 수 있습니다.
이러한 개인화 엔진이 브레이즈와 같은 고객 참여 플랫폼에 내장되면, 모든 채널과 고객 여정 전반에서 더 효율적인 개인화가 가능합니다. 이는 고객이 브랜드와 상호작용하는 모든 순간을 연결하는 경험을 창출하는 일입니다. 지금 바로 개인화 엔진과 브레이즈를 활용해 개인화된 고객 경험을 설계해 보세요.


고객 여정에는 ‘아하 모먼트(Aha Moment)’라는 중요한 순간이 있습니다. 유저가 프로덕트의 핵심 가치를 이해하는 순간입니다.
아하 모먼트를 찾고, 디자인하는 것이 중요한 이유는 아하 모먼트를 통해 목표에 도달하는 데 프로덕트가 어떻게 도움이 되는지 보여주고, 결과적으로 유저가 이탈할 확률을 줄여주기 때문입니다. 아하 모먼트를 파악하기 위해서는 기능 이해, 온보딩 완료와 같은 기본적인 유저 행동을 확인해야 합니다.
이번 아티클에서 더 많은 유저를 장기 고객으로 전환할 수 있는 아하 모먼트란 무엇인지, 그리고 어떻게 아하 모먼트를 찾고, 아하 모먼트로 유저를 유도할 수 있는지 알아보세요.
아하 모먼트는 유저가 프로덕트의 핵심 가치를 파악하고 내면화하는 순간입니다. 활성화(Activation) 모먼트, 유레카 모먼트, 깨달음의 순간(Lightbulb moment)이라고도 합니다. 아하 모먼트는 단일 순간일 수도 있고, 사용자가 프로덕트의 가치를 진정으로 파악할 수 있을만큼 충분히 사용한 시점일 수도 있습니다. 이 갑작스러운 순간은 유저를 활성화시키는 데 아주 중요하며, 일반적으로 유저가 프로덕트에 투자하기로 한 의사결정과 일치합니다.

션 엘리스(Sean Ellis)는 그의 저서 ‘진화된 마케팅 그로스 해킹’에서 아하 모먼트를 ‘유저에게 프로덕트의 유용성이 인식되는 순간, 유저가 핵심 가치를 진정으로 얻을 때’라고 정의합니다. 여기서 핵심 가치란, ‘프로덕트가 무엇을 위한 것인지, 왜 필요한지, 그리고 그것을 사용함으로써 얻을 수 있는 이익은 무엇인지’에 대한 개념입니다.
프로덕트의 아하 모먼트는 만드는 것이 아니라 사용자가 느끼는 것입니다. 아하 모먼트를 만들 수는 없지만 '프로덕트에서 아하 모먼트가 발생할 수 있는 조건'을 만들 수는 있습니다. 프로덕트 팀은 아하 모먼트를 이해하고 더 많은 유저가 아하 모먼트에 도달할 수 있도록 안내해야 합니다.
프로덕트의 아하 모먼트를 알 수 있는 몇 가지 방법을 소개합니다.
유저들은 모두 같은 특성을 갖고 있지 않습니다. 유저는 각자 가지고 있는 니즈와 해결하고자 하는 문제가 다르기 때문에 서로 다른 아하 모먼트를 경험할 수 있습니다. 이러한 아하 모먼트를 알아내려면 유저가 프로덕트를 사용하는 방법과 이유에 따라 서로 다른 페르소나를 파악하고, 그룹화해야 합니다.
몇몇 기업의 경우 유저 세그먼트를 지역과 연령대로 분류합니다. 다른 기업은 유저 역할(엔지니어 vs 디자이너, PM vs 디자이너 등)을 중심으로 세그먼트를 분류하기도 합니다. 유저 세그먼트에 대한 정의를 내리면 각 세그먼트의 라이프사이클을 보다 정확하게 분석할 수 있습니다.
위 질문에 대한 답변은 유저가 프로덕트의 가치를 빠르게 파악하고, 아하 모먼트가 발생하도록 유저를 가이드하는 데 도움을 줄 수 있습니다.

아하 모먼트를 이해하고 최적화하려면 고객 여정 전체를 파악해야 합니다. 앰플리튜드의 ‘세션 리플레이’ 기능은 유저 세션 리플레이(Session Replay)와, 실시간 분석을 결합하여 보여주기 때문에 고객 여정을 쉽게 파악할 수 있습니다.
세션 리플레이를 통해 유저의 ‘돌파구’와 같은 순간을 시각적으로 확인해 보세요. 유저가 인터페이스를 어떻게 탐색하고, 어떤 기능을 주로 사용하며, 어느 시점에 프로덕트에 대한 이해가 높아지는지 관찰할 수 있습니다. 유저 행동을 분석해 아하 모먼트가 발생하는 정확한 지점을 파악하세요. 여기서 유저 경험을 세분화하면 더 많은 유저를 아하 모먼트로 안내할 수 있습니다.
유저 피드백을 사용하여 프로덕트의 아하 모먼트를 발견할 수도 있습니다. 유저의 공감을 불러일으키는 기능을 이해하여 프로덕트 경험을 개선하고, 더 많은 유저에게 이 기능을 안내할 수 있습니다.
분석 도구를 활용해 전환율, 유저 리텐션과 같은 프로덕트 지표를 분석해 보세요. 특정 기능이 선택된 이유, 특정 조건이 적용되는 위치를 통해 리텐션 데이터를 시각화할 수 있습니다. 예를 들어 소셜미디어 앱에서 고객 행동을 분석하면, 처음 며칠 이내에 특정 수의 유저와 연결되는 것이 장기적인 리텐션으로 이어지는 것과 밀접한 관련이 있음을 알 수 있습니다.
프로덕트와 유저에 대한 깊이있는 분석으로 아하 모먼트에 대한 중요한 인사이트를 얻을 수 있습니다. 그러나 ‘선택 편향’을 주의해야 합니다. 예를 들어, 특정 온보딩 플로우를 완료한 유저에게만 초점을 맞추면 그들의 리텐션을 해당 플로우에 대한 기여로만 측정하는 오류를 범할 수 있습니다. 해당 플로우를 건너뛴 유저의 아하 모먼트는 완전히 다를 수 있습니다. 따라서 분석을 할 때에는 다양한 액션과 고객 여정을 포함하여 더 많은 유저에게 리텐션을 유도할 수 있는 아하 모먼트를 정확하게 판단해야 합니다.

아하 모먼트를 정의했다면, 프로덕트에서 유저가 아하 모먼트를 효과적으로 경험하도록 안내해 보세요.
유저를 아하 모먼트로 안내하는 것도 중요하지만 강압적인 전략은 역효과를 낼 수 있습니다. 유저는 정해진 경로대로 따라가는 것을 꺼려하고, 자신의 속도에 맞춰 프로덕트의 가치를 발견하고 싶어하는 경향이 있습니다.
방해가 되는 모달과 툴팁으로 유저 여정을 방해하기보다 직관적인 유저 여정을 설계해 보세요. 잘 설계된 도시에는 명확한 표지판, 유용한 랜드마크, 탐험의 자유를 제공하면서도 목적지까지 쉽게 이동할 수 있는 길이 있습니다.
이와 마찬가지로 프로덕트는 유저가 자연스럽게 아하 모먼트를 경험할 수 있도록 주요 액션과 기능을 부드럽게 연결해야 합니다.

유저를 아하 모먼트로 안내하는 것은 단순히 기능을 보여주는 것이 아닙니다. 새로운 유저가 프로덕트의 핵심 가치를 경험할 수 있도록 명확한 경로를 설계해야 합니다. 이해와 참여를 유도하는 주요 액션과 상호 작용에 우선순위를 두는 ‘유저 저니 맵(User Journey Map)’을 만든다고 생각해 보세요.
사용자를 자연스럽게 안내하는 직관적인 워크플로우를 구축해 보세요. 예를 들어 파일 공유 앱의 아하 모먼트가 ‘어디서든 파일에 액세스 할 수 있다는 것을 인식하는 순간’이라면, 온보딩 플로우를 통해 유저가 다른 장치에서 파일을 업로드하고 액세스할 수 있도록 즉시 유도할 수 있습니다.
프로덕트에 세 가지 일반적인 아하 모먼트가 있다고 가정했을 때, 이 세 가지 순간을 모두 경험하게 하는 것은 어려운 일입니다. 유저가 모든 아하 모먼트에 도달하도록 하는 대신 유저의 의도에 집중해 보세요. 유저가 두 번째 아하 모먼트로 나아가고 있는 것을 발견했다면 그 순간으로 이동시키는 데 집중해야 합니다.
유저의 반응이 예상되는 시점이 있다면 해당 시점에 유저를 안내해야 합니다. 유저가 몇 가지 모달이나 툴팁이 표시되자마자 닫거나 삭제한 경우, 시간차를 두고 다른 내용을 보여주는 것이 효과적입니다.
성공적인 프로덕트는 여러 경험을 통해 유저에게 가치를 제공합니다. 단 하나의 아하 모먼트에만 의존하는 것이 아니라, 유저에게 가치를 제공할 수 있는 다양한 방법을 생각해 보세요.
핵심 가치를 제안하는 주요 아하 모먼트와 유저 참여를 지속할 수 있는 보조 아하 모먼트를 설계하세요. 이를 통해 프로덕트 내에서 여러 경로를 만들어 유저가 프로덕트의 잠재력을 최대한으로 경험할 수 있습니다.
세션 리플레이를 충분히 살펴보면, 프로덕트 내에서 정처 없이 떠돌아 다니는 유저를 발견할 수 있습니다. 유저가 이 지점에 도달하기 전에, 온보딩을 완료하도록 유도해야 합니다. 때로는 유저가 스스로 해낼 수 있도록 도와야 할 때도 있습니다.
‘아하 모먼트’라는 용어는 고객 여정의 다른 성과 지표와 혼동되기도 합니다. 예를 들어, 유저의 원활한 온보딩 경험은 중요하지만 아하 모먼트라고 볼 수는 없습니다. 아하 모먼트는 유저가 프로덕트의 핵심 가치를 처음으로 이해하는 순간입니다. 온보딩 프로세스는 아하 모먼트로 유저를 안내하는 역할이라고 할 수 있습니다.
마찬가지로 단순히 프로덕트 사용 방법을 이해하는 것만으로는 아하 모먼트라고 볼 수 없습니다. 예를 들어 디자인 툴에서 디자인 기능을 이해하는 것은 꼭 필요한 과정이지만, 유저의 아하 모먼트는 툴을 활용해 팀원들과 실시간 협업의 힘을 경험하는 순간일 수 있습니다. 툴팁이나 단계별 온보딩 같은 인앱 가이드도 프로덕트의 가치를 전달하는 데 도움이 될 수는 있습니다. 그러나 아하 모먼트는 이러한 팁의 전달이 아니라 팁을 따를 때 유저가 프로덕트가 왜 필요한지 이해하게 되는 순간입니다.

유저 여정을 분석하여 프로덕트의 아하 모먼트를 정확히 파악해 보세요. 앰플리튜드의 분석 기능은 사용자 경로를 시각화하고, 참여를 유도할 수 있는 주요 기능을 식별하는 데 도움이 됩니다. 퍼널 분석을 사용하여 사용자 이탈 지점을 확인하거나, 여정 분석을 통해 일반적인 액션을 파악할 수 있습니다. 이러한 인사이트를 사용자 리서치와 결합하면 사용자 여정을 최적화하고 더 많은 사용자가 아하 모먼트를 경험하도록 안내할 수 있습니다.

CRM 마케팅이 중요해지면서 많은 기업들이 Braze를 도입하고 있다.
대부분 앱 푸시 발송과 개인화 마케팅을 위해 Braze를 사용하지만, 다양한 기능을 활용해 마케팅을 고도화하는 경우는 많지 않다.
아직 Braze 관련 학습 자료나 강의가 부족해 공식 문서에만 의존해야 하다 보니, 많은 마케터들이 Braze의 기능을 제대로 활용하지 못하고 있다.
이 글에서는 Braze를 제대로 활용하고 있는지 점검하고, 놓치고 있는 유용한 기능들을 소개하려 한다.
아래 Braze 용어 중 내가 사용한 적이 있거나, 사용하지 않았더라도 들어본 용어가 있는지 확인해 보자.
(Braze 이용자라면 누구나 사용하는, 꼭 알아야 하는 기능은 빼두었다.)
3개 이상 사용해 봤다면 Braze를 잘 활용하고 있는 셈이다.
하나도 사용해 보지 않았더라도 걱정하지 말자. 지금부터 각 기능의 활용법을 자세히 설명할 예정이다.
Frequency Cappping이란 사용자가 받는 메시지 수를 제한해 피로감을 줄여주는 기능이다.
설정 예시

위와 같이 채널별로 기간과 수신 횟수를 설정할 수 있고, Campaign이나 Canvas에 Tag를 추가하면 특정 캠페인에만 제한을 걸 수도 있다.
예를 들어 이벤트 태그가 있는 캠페인은 하루 1개만 발송하는 식이다.

"푸시가 너무 많이 와요", "인앱메시지가 자주 떠서 불편해요" 같은 VOC를 자주 받는다면 Frequency Capping을 적극 활용해보자. 사용자 경험도 개선하고 고객 만족도도 높일 수 있다.
Braze에서 자주 쓰는 필터로 'X Custom Event Property In Y Days'와 'X Purchase Property In Y Days'가 있다. 실시간으로 반영된다는 장점이 있지만, 몇 가지 제한사항이 있다.
반면 Segment Extension은 아래와 같은 장점이 있다.
예를 들어 일반 필터로는 '지난 30일간 패딩 구매자'만 찾을 수 있지만, Extension으로는 '지난 1년간 패딩 구매자' 세그먼트를 만들 수 있다.

단, Extension은 실시간 업데이트가 아닌 정해진 주기로 업데이트된다. 기존에는 매일 오전 12시마다 업데이트 되었는데, 최근 Weekly, Monthly 옵션이 추가됐다.

Webhook으로 카카오톡, 문자 메시지를 보내는 것 뿐만 아니라 빈 웹훅인 Spacer를 발송하여 A/B Test를 진행하거나, 성과를 측정하는 것도 가능하다.

Spacer 활용 사례

또한 잘못 설정된 Conversion 지표를 보완할 때도 유용하다.
Connected Content는 API를 통해 외부 데이터를 실시간으로 가져와 메시지에 활용하는 기능이다.
활용 가능한 데이터:
이러한 데이터는 Braze에 저장되지 않아 보안성이 높고, 실시간 데이터로 더 정확한 개인화가 가능하다.
API Response 값을 메시지에 바로 사용하거나, Liquid 구문으로 메시지 발송 조건으로 활용할 수도 있다.
API 개발이 필요하지만, 활용하면 한층 더 다양한 개인화 메시지를 만들 수 있다.
Connected Content 사용 사례
1. Open API 활용 : 누구나 이용할 수 있는 Open API를 활용하여 다양한 캠페인을 진행할 수 있다.

2. 내부 API 활용 : 기개발된 API가 있다면 해당 API를 활용하여 다양한 캠페인 운영이 가능하다.


.png)
Query Builder는 SQL Query를 사용해 데이터를 출력하는 기능이다.
Campaign Analytics와 Engagement Report를 통해 캠페인 발송 수와 전환 수는 확인할 수 있지만, 유저가 어떤 상품을 구매했는지, 혹은 다른 이벤트가 발생했는지는 알 수 없다.
유저 행동을 더 자세히 분석하고 싶다면 쿼리빌더를 활용해보자. SQL에 익숙하다면 직접 쿼리를 작성할 수 있고, 그렇지 않다면 Query Template이나, AI Query Builder를 통해 쿼리를 생성하여 사용하면 된다.

Query Builder를 통해 N Day Retention과 같은 데이터도 확인할 수 있다.
N Day Retention 활용 사례 보러가기
어트리뷰트 데이터 테이블은 지원하지 않지만, 캠페인, 캔버스, 이벤트, 세션 정보 같은 유용한 데이터는 쉽게 추출할 수 있다. 다양한 분석을 원한다면 Query Builder를 적극 활용하자.
(단, Query Builder는 매월 사용할 수 있는 크레딧이 있으니, 쿼리 실행 시 크레딧이 줄어드는 점을 주의해야 한다!)
앞서 언급한 기능 외에도 Braze를 더 깊이 활용할 수 있는 방법은 많다.
실무로 바빠서 Braze를 자세히 살펴볼 시간이 없더라도, 틈틈이 다양한 기능을 활용해 보다 효율적이고 정교한 CRM 마케팅을 진행하길 바란다.
또한 기존 기능에 새로운 요소가 추가되거나 새로운 기능이 출시되니, 매월 업데이트되는 Braze Release Note를 확인하는 것을 추천한다.
*글의 원문은 최영아님의 브런치스토리 에서도 읽어보실 수 있습니다.