인사이트 - MARTECH

MARTECH_image_thumbnail
GROWTH

1. 웍스아웃: 프로모션 대시보드

July 18, 2024

0. 개념설명

프로모션 분석이란?

프로모션 분석은 마케팅 캠페인의 일환으로 진행된 다양한 프로모션 활동들의 효과를 평가하고 측정하는 과정입니다. 이 과정을 통해 기업은 프로모션 활동이 소비자의 구매 결정, 브랜드 인식, 시장 점유율 등에 미치는 영향을 분석할 수 있습니다. 프로모션 분석을 위해 판매 데이터, 소비자 행동 데이터, 온라인 트래픽 데이터 등 다양한 데이터 소스를 활용할 수 있습니다.

프로모션 분석의 필요성

프로모션 분석은 기업이 자원을 효율적으로 배분하고, 마케팅 목표를 달성하기 위해 필수적인 과정입니다. 이를 통해 기업은 다음과 같은 이점을 얻을 수 있습니다.

  • 효과적인 프로모션 전략 수립: 어떤 프로모션이 고객의 구매를 유도하고, 브랜드 인지도를 높이는 데 효과적인지 파악할 수 있습니다.
  • ROI 최적화: 프로모션에 대한 투자 대비 수익률(ROI)을 측정하고, 마케팅 예산을 더 효과적인 프로모션에 집중할 수 있습니다.
  • 시장 이해도 향상: 소비자 반응을 분석함으로써 시장의 현재 요구와 트렌드를 더 잘 이해할 수 있습니다.
  • 경쟁력 강화: 경쟁사 대비 우위를 점할 수 있는 마케팅 전략을 개발하고 실행할 수 있습니다.

개별 프로모션 분석 vs 통합 프로모션 분석

  • 개별 프로모션 분석
    • 특징
      • 한 번에 하나의 프로모션 활동만 평가합니다.
      • 구체적인 프로모션의 성공 여부와 직접적인 효과를 분석합니다.
    • 장점
      • 간단하고 명확한 결과 제공
      • 특정 프로모션의 직접적인 효과를 빠르게 평가 가능
    • 단점
      • 다른 마케팅 활동과의 상호작용을 고려하지 않음
      • 장기적인 효과나 전체적인 마케팅 전략과의 연계성 부족
  • 통합 프로모션 분석
    • 특징
      • 여러 프로모션 활동을 함께 분석하여 전체적인 마케팅 전략의 효과를 평가합니다.
      • 프로모션 간의 상호작용 및 시너지 효과를 고려합니다.
    • 장점
      • 전략적인 의사결정 지원
      • 장기적인 브랜드 가치와 고객 관계를 고려한 분석
      • 장기적인 효과나 전체적인 마케팅 전략과의 상호작용 이해 가능

개별 프로모션 분석과 통합 프로모션 분석을 함께 분석해야 하는 이유

개별 프로모션 분석과 통합 프로모션 분석을 함께 수행함으로써, 보다 정교하고 효과적인 마케팅 전략을 개발할 수 있으며, 이는 최종적으로 기업의 성장과 수익성 향상에 기여하게 됩니다.

1. 전체적인 마케팅 전략의 효율성 평가

개별 프로모션 분석을 통해 특정 프로모션의 성공 여부를 파악할 수 있지만, 통합 프로모션 분석을 함께 수행하면 여러 프로모션 간의 상호작용과 그 영향을 이해할 수 있습니다. 이는 전체 마케팅 전략의 효율성을 평가하는 데 중요합니다.

2. 다채널 프로모션 전략의 최적화

현대 마케팅은 다양한 채널을 통해 이루어집니다. 개별 프로모션 분석과 통합 분석을 병행함으로써, 각 채널의 성과를 정확히 파악하고, 채널 간 시너지를 극대화하는 전략을 수립할 수 있습니다.

3. 고객 행동의 종합적 이해

고객은 다양한 프로모션에 노출되며, 이러한 노출이 고객의 구매 결정에 복합적으로 작용합니다. 개별 프로모션 분석과 통합 분석을 결합함으로써, 고객 행동의 더 깊은 이해를 도모할 수 있습니다.

4. 마케팅 자원의 효율적 배분

통합 프로모션 분석을 통해 얻은 인사이트는 마케팅 자원의 효율적인 배분을 가능하게 합니다. 각 프로모션의 효과를 개별적으로뿐만 아니라 전체적인 관점에서 평가함으로써, 예산을 더 효과적인 프로모션에 집중할 수 있습니다.

5. 장기적 마케팅 전략 수립

개별 프로모션의 성공은 단기적인 성과에 초점을 맞출 수 있지만, 통합 프로모션 분석은 장기적인 관점에서 마케팅 전략을 수립하는 데 도움을 줍니다. 다양한 프로모션의 장기적인 영향력과 지속 가능성을 평가할 수 있습니다.

6. 경쟁 우위 확보

통합 프로모션 분석을 통해 시장 내 경쟁 상황과 자사의 위치를 종합적으로 이해하고, 경쟁 우위를 확보할 수 있는 전략을 수립할 수 있습니다. 이는 경쟁사 대비 우위를 점하는 데 중요한 역할을 합니다.

1. 진행배경

고객사 상황 및 해당 대시보드를 제작하게된 이유

고객사에서는 프로모션 분석 진행 시 앰플리튜드를 통한 단일 프로모션 위주의 분석만을 진행했었습니다.

단일 프로모션 분석 진행 예시

앞서 언급했듯이 단일 프로모션 분석만 진행하게 된다면 결과적으로 장기적인 효과나 전체적인 마케팅 전략과의 연계성이 부족해지는 문제가 있습니다.

이러한 문제를 해결하기위해 프로모션을 통합적으로 확인하는 것에 대한 필요성이 대두되었습니다. 먼저, 통합 프로모션 분석을 위해 1차적으로 앰플리튜드를 통해 얻은 개별 프로모션별 데이터를 스프레드시트에서 취합해 프로모션들끼리 비교하며 인사이트를 도출했습니다.

프로모션 통합 분석 시트 예시

하지만 시트를 통해 프로모션을 비교 분석하는 것에는 크게 2가지 정도의 한계가 있었습니다.첫째, 프로모션이 진행될 때마다 데이터를 확인하고, 직접 시트에 옮기는 작업을 해야 하기 때문에 자동화가 어렵다는 점입니다.둘째, 시트에 텍스트로만 적혀있다보니 해당 데이터가 무엇을 의미하는지 직관적으로 인지하기가 어렵다는 점입니다.이러한 한계를 극복하기 위해 고안한 것이 전체 프로모션을 한눈에 파악할 수 있는 대시보드를 구현하는 것이었습니다.

2. 진행과정

대시보드는 태블로(Tableau)를 사용하여 구현했습니다.

태블로(Tableau) 로고

태블로는 데이터를 분석하고 시각적으로 표시할 수 있는 비즈니스 인텔리전스(BI)툴입니다. 태블로를 통해 대시보드를 제작했을 때의 장점은 다음과 같습니다.

1. 여러 raw 데이터 통합: 태블로는 스프레드시트, 데이터베이스, 클라우드 서비스 및 빅데이터 플랫폼과 같은 다양한 데이터 원본들을 원활하게 통합됩니다. 이러한 통합을 통해 다양한 소스의 데이터를 연결 가능하게 하여 데이터 사일로를 해결하고 포괄적인 분석을 가능하게 합니다.데이터 사일로(Data Silo*)**란? 서로 분리되어 기업의 다른 부서에서 액세스할 수 없는 데이터 스토리지 및 관리 시스템을 의미하며, 이는 전사관점의 의사결정을 방해하고, 비효율성이 증가시킵니다.

  • 예시: Excel 스프레드시트에 저장된 판매 데이터와 SQL 데이터베이스에 저장된 고객 데이터가 있다고 가정합니다. Tableau는 두 원본에 동시에 연결할 수 있으므로 데이터를 혼합하고 시각화하여 판매와 고객 인구 통계 간의 관계에 대한 인사이트를 얻을 수 있습니다.

2. 실시간 데이터 시각화: 태블로는 라이브 데이터베이스 및 스트리밍 데이터를 비롯한 다양한 데이터 원본에 연결하여 실시간으로 데이터 업데이트할 수 있습니다. 이 기능을 사용하면 변경되는 데이터를 빠르게 모니터링하고 분석하여 빠른 의사 결정을 위한 시기적절한 통찰력을 제공할 수 있습니다.

3. 다양한 시각화 옵션: 태블로는 막대 차트, 선 차트, 산점도, 지도 등을 포함하여 다양한 시각화 옵션을 제공합니다. 정보를 효과적으로 전달하기 위해 데이터에 가장 적합한 시각화 유형을 선택할 수 있습니다.

4. 대화형 대시보드: Tableau를 사용하면 사용자가 직접 데이터를 탐색하고 상호 작용할 수 있는 고도의 대화형 대시보드를 만들 수 있습니다. 사용자는 세부 정보를 드릴다운하고, 데이터를 필터링하고, 임시 분석을 수행하여 데이터 탐색의 깊이를 향상할 수 있습니다.

2-1. 대시보드 스케치

통합 프로모션 분석을 위해 정의한 스케치입니다. 해당 스케치는 피그마(Figma)를 통해 작업했습니다. 스케치를 피그마로 제작한 이유는 여러가지가 있는데, 그 중 가장 중요한 이유는 피그마가 다양한 디자인 도구와 기능을 제공하기 때문에 원하는 디자인을 쉽고 효율적으로 제작할 수 있기 때문이었습니다.

웍스아웃 프로모션 분석 대시보드

스케치 대시보드를 기준으로 필요한 데이터를 정리해보면 데이터는 크게 3가지로 분류할 수 있습니다.

1. 프로모션 데이터

2. 매출 데이터

3. CRM 데이터

프로모션명, 진행일자, 분류, 컨셉 등 프로모션 진행 관련 기본 정보 및 프로모션 관련 아이템 정보가 프로모션 데이터에 해당하며, 각 프로모션에 관련된 실제 결제 정보가 매출 데이터에 해당합니다. 마지막으로 유저들에게 발송된 메시지의 발송일 및 캠페인명, 발송수 등이 CRM 데이터에 해당합니다.

웍스아웃 프로모션 분석 대시보드 - 프로모션 및 매출 정보 확인

2-2. 필요 데이터 정의 및 추출

필요 데이터 정의 및 추출

필요 데이터 정의

다음으로 앞서 정리한 데이터를 좀 더 구체적으로 정리합니다. 각 항목별 필요한 정보가 정확히 무엇인지, 해당 데이터는 형태로 관리되어야 하는지를 비롯해 각 데이터를 연결하기 위해 어떤 컬럼을 키값으로 사용해야 하는지 등을 파악하여 정리합니다.

필요 데이터 정의 및 분류 예시

이때 테이블 색상에 차이를 두어 각 데이터가 어떤 소스에서 관리되는지 직관적으로 파악할 수 있도록 합니다.

데이터 테이블 색상 차이 설명

데이터 추출 요청 및 추출

필요 데이터 정의를 완료했다면, 데이터 추출을 위해 해당 데이터에 대해 알맞은 형태로 적재를 요청하는 단계가 필요합니다. 효율적인 작업을 위해 원하는 이벤트 및 세부 항목(*이벤트 프로퍼티, 유저 프로퍼티, 적재형식, 적재기준일, 요청사유 등) 관련 내용을 최대한 상세하게 기입합니다.

데이터 추출 요청 예시

원하는 이벤트 및 세부 항목을 작성한 다음에 해당 내용을 정확히 어떤 형태로 적재되기 원하는지를 보여주는 샘플을 함께 작성합니다.

이벤트 데이터 샘플링 예시

2-3. 데이터 연결

Amplitude → Bigquery → Tableau

이제 데이터 연결을 진행해야 합니다. 해당 프로젝트에는 구글 스프레드시트, 엑셀 파일, 구글 클라우드(빅쿼리)의 소스가 사용되었습니다. 저는 그 중 ‘구글 클라우드’에 초점을 맞추어 데이터 연결과정에 대해 설명하려고 합니다.

앰플리튜드에서 태블로로의 데이터 전송

구글 클라우드를 사용한 이유는 무엇일까요? 그 이유는 앰플리튜드(Amplitude)에 있는 매출 데이터를 연결하기 위함입니다. 앰플리튜드는 그 자체로 사용성이 높이며, 매출 데이터를 비롯하여 많은 데이터를 손쉽게 확인할 수 있는 툴입니다.

하지만 지금과 같이 더 많은 내용을 확인하기 위해서는 다른 로데이터와 결합을 해서 데이터를 확인하는 과정이 필요합니다. 이 때, 앰플리튜드에서 태블로로 데이터를 바로 전달할 수는 없습니다.

앰플리튜드에서 태블로로의 데이터 전송 시 필요사항

태블로로 데이터를 전송하기 위해서는 앰플리튜드의 로데이터를 가공하여 알맞은 형태로 테이블을 가공해주는 선행작업이 필요합니다. 앰플리튜드와 연동이 가능할 뿐만아니라 태블로와의 연동도 가능해야 하며 무엇보다 앰플리튜드로부터 전달받은 로데이터를 가공할 수 있는 플랫폼이여야합니다.

이 작업을 수행할 수 있는 플랫폼은 무엇일까요? 저희는 이러한 요건을 모두 고려할 때 해당 작업을 수행하기에 가장 적합한 것이 Google BigQuery라고 판단했고, 이를 활용하기로 했습니다.

앰플리튜드에서 태블로로의 데이터 전송 시 필요한 구글 빅쿼리

앰플리튜드는 기본적으로 빅쿼리로 데이터를 바로 내보내는 기능을 제공합니다. 우선 해당 기능을 활용해 앰플리튜드 데이터를 빅쿼리에 내보내는 작업을 진행했습니다.

앰플리튜드에서 빅쿼리로 데이터 전송

해당 방법을 통해 데이터를 받아올 경우, 이벤트 프로퍼티가 분리된 표 형식으로 넘어오는게 아니라 json이라는 괄호 안에 키와 값형태로 구성돼 있는 포맷(*”{”~”}”)으로 데이터가 불러와지는 문제가 발생했습니다.

태블로는 표 형태의 데이터 프레임을 인식하므로, 태블로에 데이터를 연결하기 위해서는 앰플리튜드  로데이터를 전처리하는 과정이 필요했습니다.

이벤트 프로퍼티 전처리 전 모습

해당 데이터를 전처리하기 위해서는 로데이터의 형태를 파악해야 했습니다. 데이터를 확인한 결과, 텍소노미에 따라 로데이터의 구조가 다를 수 있음을 확인했습니다.

구매 이벤트의 경우 아이템 수량이 1개일 경우에는 값으로, 2개 이상일 경우에는 배열로 이벤트 프로퍼티 데이터가 들어오는 구조였습니다.

  • 아이템 수량=1인 경우
{"item_brand":"DEUS EX MACHINA",
"item_category":"JAJL",
"item_id":"148968",
"item_name":"ORTIZ GARAGEJACKET",
"item_price":"198000",
"order_id":"20240310105120687",
"total_order_items_quantity":1
…}
  • 아이템 수량=2 이상인 경우
{"item_brand":["DEUS EX MACHINA","DEUS EX MACHINA"],
"item_category":["LFOT","반팔 셔츠"],
"item_id":["157250","157263"],
"item_name":["DEUS X FUEL TRAVEL COMB","DEUS X FUEL CUSTOM SHIRT"],
"item_price":[18000,113000],
"total_order_items_quantity":2}

따라서 데이터 전처리를 위해서는 각 케이스별로 다른 전처리과정을 거쳐야했습니다. 아이템 수량이 1개일경우는 JSON의 값을 파싱하는 처리를 하고, 2개 이상일 경우에는 JSON의 배열을 파싱하는 처리를 진행했습니다.

해당 내용을 처리하는 쿼리문 다음과 같습니다. 케이스별로 결과 테이블이 도출되면, 두 테이블을 유니온하여 한 테이블로 합치는 작업을 진행했습니다.

  • 아이템 수량=1인 경우
SELECT event_time, user_id,
      JSON_VALUE(event_properties, '$.order_id') as order_id, 
      JSON_VALUE(event_properties, '$.item_category') as item_category, 
      JSON_VALUE(event_properties, '$.item_brand') as item_brand, 
      JSON_VALUE(event_properties, '$.item_name') as item_name, 
      JSON_VALUE(event_properties, '$.item_id') as item_id,
      JSON_VALUE(event_properties, '$.item_price') as item_price
FROM amplitude_test.EVENTS_353961
WHERE event_type='total_items_order_completed'
      AND JSON_VALUE(event_properties,'$.total_order_items_quantity')='1';
  • 아이템 수량=2 이상인 경우
WITH item_details AS (
  SELECT event_time, user_id,
    JSON_VALUE(event_properties,'$.order_id') AS order_id,
    ARRAY(
      SELECT AS STRUCT 
        item_category, item_name, item_id, item_price, item_brand
      FROM 
        UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_id')) AS item_id WITH OFFSET AS pos
        JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_category')) AS item_category WITH OFFSET AS pos_cat ON pos = pos_cat
        JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_brand')) AS item_brand WITH OFFSET AS pos_br ON pos = pos_br
        JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_name')) AS item_name WITH OFFSET AS pos_name ON pos = pos_name
        JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_price')) AS item_price WITH OFFSET AS pos_price ON pos = pos_price
    ) AS items
  FROM amplitude_test.EVENTS_353961
  WHERE JSON_VALUE(event_properties,'$.total_order_items_quantity')!='1'
)
  • 두 CASE 합치기
WITH single_item_orders AS (
  SELECT event_time, user_id,
    JSON_VALUE(event_properties, '$.order_id') AS order_id, 
    JSON_VALUE(event_properties, '$.item_category') AS item_category, 
    JSON_VALUE(event_properties, '$.item_brand') AS item_brand, 
    JSON_VALUE(event_properties, '$.item_name') AS item_name, 
    JSON_VALUE(event_properties, '$.item_id') AS item_id,
    JSON_VALUE(event_properties, '$.item_price') AS item_price
  FROM amplitude_test.EVENTS_353961
  WHERE event_type='total_items_order_completed'
    AND JSON_VALUE(event_properties,'$.total_order_items_quantity')='1'
),
multi_item_orders AS (
  SELECT event_time, user_id,
    JSON_VALUE(event_properties,'$.order_id') AS order_id,
    item.item_category, item.item_brand, item.item_name, item.item_id, item.item_price
  FROM amplitude_test.EVENTS_353961,
    UNNEST(
      ARRAY(
        SELECT AS STRUCT 
          item_category, item_name, item_id, item_price, item_brand
        FROM 
          UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_id')) AS item_id WITH OFFSET AS pos
          JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_category')) AS item_category WITH OFFSET AS pos_cat ON pos = pos_cat
          JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_brand')) AS item_brand WITH OFFSET AS pos_br ON pos = pos_br
          JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_name')) AS item_name WITH OFFSET AS pos_name ON pos = pos_name
          JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_price')) AS item_price WITH OFFSET AS pos_price ON pos = pos_price
      )
    ) AS item
  WHERE 
    JSON_VALUE(event_properties,'$.total_order_items_quantity')!='1'
)

-- 아이템 수량= 1인 경우의 결과와 아이템 수량= 2 이상인 경우의 결과를 합치기
SELECT *
FROM single_item_orders
UNION ALL
SELECT * 
FROM multi_item_orders;

해당 작업을 완료한 결과는 다음과 같습니다.

쿼리 결과 화면

UNNEST()함수를 포함한 단계를 거쳐 데이터 전처리를 진행할 경우 JSON을 데이터 프레임 형태, 즉 테이블 형식으로 바꾸는 것은 가능했습니다.

좀 더 직관적으로 UNNEST()함수를 이해하기 위해 예시를 들어보겠습니다. name이라는 컬럼은 값이지만, preferred langauge는 배열일 경우 빅쿼리는 테이블을 왼쪽처럼 인식합니다. 즉 값으로 구성된 행에 배열로 구성된 행을 묶어두는 구조인데요, 이 묶어둔다라는 것을 nest된 상태라고 하고, 값을 배열에 맞춰서 풀어주는 행위를 unnest라고 합니다.

 unnest 적용 화면 예시

하지만 UNNEST()함수를 사용할 경우 단점이 있었습니다.이 함수는 배열 내 각 요소를 별도의 행으로 확장하는 기능을 제공하기 때문에 비정규화된 데이터나 중첩된 데이터 구조를 다룰 때 필수적입니다. 그러나 비용관리의 관점에서 주의가 필요하다는 단점이 있습니다. UNNEST() 함수는 배열 내의 각 요소를 별도의 행으로 확장하기 때문에 배열에 많은 요소가 포함되어 있을 경우, 결과 데이터 세트의 크기가 급격히 증가할 수 있습니다. 이는 쿼리 처리 시간을 늘리고 처리해야 할 데이터 양이 증가함으로써 비용이 증가하는 원인이 될 수 있으며, 처리한 데이터 양에 따라 비용이 청구되는 빅쿼리에서는 쿼리 비용의 증가로 이어질 수 있습니다.

실제 프로젝트를 진행하면서 해당 쿼리문을 사용해 약 한달 간 매 시간마다 업데이트 되도록 쿼리를 돌려본 데이터 업데이트를 진행한  결과, 총 8GB를 사용해 월 40만원 가량의 비용이 소진되었습니다. 따라서 비용 효율성 측면을 고려해 전처리를 클라우드 SQL구문이 아닌 파이썬 코드로 처리하도록 우회했습니다.

앰플리튜드의 데이터를 빅쿼리로 바로 내보내는 것이 아니라 앰플리튜드 서버를 호출하여 데이터를 받아오는 방식으로, 빅쿼리에서 로우 데이터를 쌓은 후 이를 전처리하는 방식 대신 전처리를 완료한 후 가공된 데이터를 빅쿼리에 쌓는 방식으로 변경했습니다.

Amplitude → Google Cloud Storage → Bigquery → Tableau

즉, 기존 Amplitude → Bigquery → Tableau의 단계에서 데이터 전처리를 위해 Google Cloud Storage를 추가한 Amplitude → Google Cloud Storage → Bigquery → Tableau 단계로 진행됩니다.

데이터 전처리 과정 도식화

이 작업을 위해서는 우선 앰플리튜드와 Google Cloude Storage를 연결하는 작업을 진행해주어야 합니다. 먼저 Cloud Storage에서 고객사 프로젝트 관련 Bucket을 생성합니다.

Cloud Storage Bucket 생성 화면
Cloud Storage Bucket 세부 설정 화면

다음으로 IAM 및 관리자 → 서비스 계정을 클릭하여 새로운 서비스 계정을 생성합니다.

서비스 계정 생성 화면

서비스 계정을 생성한 후, 해당 서비스 계정에 해당하는 이메일을 확인합니다.

서비스 계정 이메일 확인

키 → 키 추가를 클릭하여 키를 생성합니다.

키 생성 화면
JSON 유형 키 생성 화면

IAM 및 관리자 → 역할을 클릭하여 새로운 역할을 생성합니다.  Send Amplitude Event Data to Google Cloud Storage(문서링크)를 참고해서 역할에 다음 5개의 권한을 부여해줍니다.

  • storage.buckets.get
  • storage.objects.get
  • storage.objects.create
  • storage.objects.delete
  • storage.objects.list

새로운 역할 생성 및 권한 부여 화면

앞서 생성한 버킷으로 돌아가서 권한을 클릭한 후 액세스 권한 부여를 클릭합니다.

버킷 액세스 권한 부여

서비스 계정에서 추가한 새로운 계정에 해당하는 이메일을 입력한 후, 역할을 지정해줍니다.이때 역할은 1.저장소 기존 버킷 소유자와 2.역할 만들기를 통해 생성한 역할, 총 2개를 부여해줍니다.

새로운 계정 역할 부여 화면

해당 작업까지 완료했으면 앰플리튜드에서 Google Cloude Storage를 연결하는 작업을 진행해주어야 합니다. 앰플리튜드  Data → Destination에서 Google Cloud Storage를 클한 후 GCS로 보낼 데이터를 선택합니다.

앰플리튜드에서 Google Cloud Storage로 데이터 전송

서비스 계정 생성에서 생성한 JSON키 파일을 Service Account Key에 업로드 한 후, 하단의 Bucket Name에 구글 GCS에서 생성한 버킷 이름을 입력해줍니다.

JSON키 파일 업로드 화면

해당 과정을 성공적으로 마치면 Google Cloud Storage Bucket에 데이터가 들어옵니다.

 Google Cloud Storage Bucket 화면

연동이 완료되면 다음과 같이 생성됩니다.

*merged ID 된 데이터 : -000000/ , raw 데이터: 000000/ → 우리가 사용하게될 데이터는 000000/ (raw 데이터)
  • 압축된 아카이브 JSON 파일로 매 시간 내보내지고 시간 당 하나 이상의 파일로 시간별로 분할
    • 파일명
projectID_yyyy-MM-dd_H#partitionInteger.json.gz

{ "server_received_time": "UTC ISO-8601 timestamp", "app": int, "device_carrier": string, "$schema": int, "city": string, "user_id": string, "uuid": "UUID", "event_time": "UTC ISO-8601 timestamp", "platform": string, "os_version": string, "amplitude_id": long, "processed_time": "UTC ISO-8601 timestamp", "user_creation_time": "UTC ISO-8601 timestamp", "version_name": string, "ip_address": string, "paying": boolean, "dma": string, "group_properties": dict, "user_properties": dict, "client_upload_time": "UTC ISO-8601 timestamp", "$insert_id": string, "event_type": string, "library": string, "amplitude_attribution_ids": string, "device_type": string, "device_manufacturer": string, "start_version": string, "location_lng": float, "server_upload_time": "UTC ISO-8601 timestamp", "event_id": int, "location_lat": float, "os_name": string, "amplitude_event_type": string, "device_brand": string, "groups": dict, "event_properties": dict, "data": dict, "device_id": string, "language": string, "device_model": string, "country": string, "region": string, "is_attribution_event": bool, "adid": string, "session_id": long, "device_family": string, "sample_rate": null, "idfa": string, "client_event_time": "UTC ISO-8601 timestamp" }

앰플리튜드는 export API라는 서비스를 제공하므로 이 API를 호출하여 데이터를 불러올 수 있습니다. 파이썬의 request모듈로 API요청을 보내는 함수를 구현하고, 다음으로 데이터 전처리 모듈은 pandas모듈을 활용하여 JSON 포맷을 테이블 형식의 데이터 프레임으로 전처리했습니다. 1차 시도당시 빅쿼리로 진행했던 조건문을 프로그래밍 언어로 대체한 것입니다. 마지막으로 빅쿼리 클라이언트 라이브러리를 설치하여 전처리한 테이블을 빅쿼리로 업로드하는 함수를 구현했습니다.

내용을 요약하면 다음과 같습니다.

1. 앰플리튜드

  • 앰플리튜드가 GCS 버킷에 접근하여 이벤트 데이터를 전송합니다.

2. GCS

  • 앰플리튜드 이벤트 데이터는 GCS의 객체로 생성됩니다. 이때 객체 트리는 “버킷>폴더>시간대(yyyy-mm-dd_h)#순번’으로 네이밍되어 적재됩니다. (*e.g: 353961_353961_2023-06-25_1#0)

3. GCF

ㅤ: 버킷에 객체가 생성될 때마다 객체 데이터를 전처리한 후, 빅쿼리에 로드하는 함수 구현

3-1. 트리거
: GCS에 객체가 생성될때마다 호출합니다.

‘(Amplitude → Google Cloud Storage)’와 ‘(Google Cloud Storage) → Bigquery)’를 Google Cloud Functions로 연결하고자 트리거를 “Google Cloud Storage에 앰플리튜드 파일(객체)가 생성될 때”로 정의했습니다.

트리거 진입함수는 main()으로 설정합니다. 이때 트리거 대상 객체의 파일명을 확인하기 위해 data json 객체를 로드하여 메타 데이터를 확인합니다.

3-2. gcs_read()
: 트리거 수신 위치의 버킷 객체를 참조하여 읽어들입니다.

  • gcs_read()로 트리거 대상 객체의 파일을 읽어오고 빅쿼리의 index가 되어 줄 부분을 파싱합니다.
    • index_prefix : projectID_yyyy-MM-dd_H#partitionInteger.json.gz 파일명에서 ‘yyyy-MM-dd_H#partitionInteger’을 가져와 정수형으로 변환한 뒤 값을 할당합니다.
  • json_objects : 버킷에 저장돼 있던 압축된 아카이브 JSON 파일을 압축해제한 뒤, 데이터프레임으로 변환하기 위해 줄바꿈되어 있는 부분을 기준 삼아 데이터를 분리합니다.

3-3. json_make_dataframe()
: json객체를 total_items_order_completed, item_order_completed 각각의 데이터프레임(df1, df2)으로 변환합니다.

3-4. join_dataframes()
: df1, df2를 index 컬럼 기준으로 조인하여 joined_df라는 데이터프레임을 생성합니다.

3-5. append_to_bigquery()
: joined_df 데이터프레임에 맞는 스키마를 정의하여 빅쿼리에 로드합니다.

해당 작업을 완료하면, 최종적으로 빅쿼리에 데이터가 정상적으로 저장되며, 태블로에 연결해서 시각화할 수 있습니다.

빅쿼리 데이터 태블로 연결 화면

3. 대시보드 체크포인트

3-1. 가장 중점적으로 고민한 부분

통합 프로모션 대시보드이므로 프로모션 간의 비교가 가능하도록 하는 것이 최우선순위 목표였습니다. 하지만 통합 프로모션 대시보드 내에서 개별 프로모션의 성과 및 관련 내용도 바로 파악이 가능하도록 대시보드를 구성하고자 했습니다.

프로모션 리스트 부분에서 프로모션 성과들을 직관적으로 비교해서 확인할 수 있도록 했으며, sales summary내의 각 KPI의 프로모션 평균값을 제공하여 프로모션의 평균값과의 비교가능하게함으로써 프로모션 간의 비교 분석이 가능하도록 대시보드를 구성했습니다. 또한 프로모션 리스트에서 개별 프로모션 클릭 시 해당 프로모션에 해당하는 내용으로 필터링이되어 표현되게함으로써 개별 프로모션의 성과 역시 파악할 수 있도록 대시보드를 구성했습니다.

3-2. 대시보드 구현 시 발생했던 문제점 및 이를 해결하기 위한 과정

데이터를 태블로로 넘긴 후 ERP 기준 매출 데이터와 정합성을 확인하는 과정에서 매출액의 약 0.2%의 차이가 발생함을 확인했습니다. 이는 최종 매출액에서 반품 및 교환 비용을 고려하지 못했기 때문에 발생한 결과였습니다.

따라서 앰플리튜드의 반품 및 교환관련 이벤트인 return_completed의 return_paid_shipping(교환 및 환불금액)관련 항목을 추가하여 해당 금액을 반영해줌으로써 데이터 정합성을 맞췄습니다.

대시보드 구현시 발생했던 문제점 및 이를 해결하기 위한 과정

3-3. 가장 어려웠던 부분

해당 대시보드를 사용하는 고객사는 프로모션의 분류를 크게 할인과 쿠폰 2가지로 구분하고 있습니다.

즉, 1차적으로 가격을 낮춰 세일가에 제품을 구매하는 ‘할인’ 프로모션과 쿠폰을 소지하고 있는 고객이 쿠폰을 직접 사용해서 제품을 구매하는 ‘쿠폰’ 프로모션이 존재합니다. 이때 쿠폰 프로모션의 경우 총 매출 관련 항목과 쿠폰 매출 관련 항목으로 구분해서 성과를 확인할 수 있지만, 할인 프로모션의 경우 쿠폰 관련값이 존재하지 않으므로 쿠폰 매출 관련 성과는 확인이 불가능합니다. 따라서 성과를 확인함에 있어서 쿠폰 프로모션의 경우에는 쿠폰 매출 관련 항목을 확인해야 하고, 할인 프로모션의 경우에는 총 매출 관련 항목을 확인해야 합니다.

이를 적용했을 때 Sales Summary를 확인함에 있어서 결제상품수, 결제건수, 구매고객수의 경우 할인 프로모션의 경우에는 총 매출액 관련 항목으로, 쿠폰 프로모션의 경우에는 쿠폰 매출액 관련 항목으로 구분해서 표현해주어야 합니다.

Sales Summary 스코어 카드

이를 위해 케이스를 나누고, 쿠폰 아이디가 존재할 경우 쿠폰 프로모션으로 판단해서 쿠폰 매출 관련으로 카운트 하고, 쿠폰 아이디가 존재하지 않을 경우 할인 프로모션으로 판단해서 총 매출 관련항목으로 카운트할 수 있도록 계산된 필드를 생성합니다.

SQL
-- 결제상품수 예시
{FIXED [Promotion name1],[Classification],[Coupon Id]: 
    SUM(IF [Classification]='쿠폰' and ([# COUPON ID_1]= [Coupon Id] 
		    OR [# COUPON ID_2]= [Coupon Id] OR [# COUPON ID_3]= [Coupon Id]) 
        THEN 1
        ELSEIF [Classification]='할인' THEN 1
    END)}

4. 대시보드 템플릿

최종적으로 제작된 통합 프로모션 대시보드는 다음과 같습니다.

 통합 프로모션 대시보드 예시

4-1. 대시보드 템플릿 설명

📊 통합프로모션 대시보드 설명
1. 분류(쿠폰/할인) 및 테마 필터
- 해당 필터를 클릭하여 1. 프로모션 리스트에서 프로모션을 확인할 수 있습니다.
- 필터가 동작함에 따라 2. 세일 요약 내의 프로모션 평균이 변동됩니다.

2. 3. 아이템 디테일 내 브랜드별, 카테고리별, 상품별 막대그래프를 클릭하여 상세 판매현황을 확인할 수 있습니다.
- 클릭했던 막대그래프를 재클릭하시면 클릭을 해제하실 수 있습니다.

3. 5. CRM 정보에 표기되는 CRM 리스트 기준은 다음과 같습니다.
1) 전송건수: 10,000건 이상
2) Campaign Category: RAF, NTC(라플 및 공지) 제외
3) App: WO (칼하트윕 제외)

4-2. 해당 템플릿을 사용하는 방법

대시보드 우측 상단의 i표시를 클릭하면, 대시보드에 대한 설명을 확인할 수 있습니다. 프로모션의 분류가 할인일 경우, 1. Promotion List 에 쿠폰 판매건 및 쿠폰 판매액은 0건, 0원으로 표시됩니다. 2. Sales 의 결제 상품수, 결제 건수, 구매고객수의 경우, 프로모션 분류가 쿠폰일 경우에는 쿠폰 판매에 관련된 내용으로, 프로모션 분류가 할인일 경우에는 총 판매액에 관련된 내용으로 표시됩니다.

대시보드 작동예시를 좀 더 자세히 살펴보면 다음과 같습니다.

1. Promotion List

    프로모션 명을 클릭해서 해당 프로모션에 해당하는 2.sales, 3. Item detail, 4. Sale Trend, 5 CRM Info 를 확인할 수 있습니다.
대시보드 작동예시 - 프로모션 리스트

Promotion List 우측 분류 및 테마 필터를 클릭하여 해당하는 프로모션을 확인할 수 있습니다.

대시보드 작동예시 - 필터 확인

2.Sales(sales summary)

해당 프로모션의 총 매출액, 쿠폰 매출액, 결제 상품수, 결제 건수, 구매고객수 및 각 항목에 해당하는 일평균 액수를 확인할 수 있습니다.

Promotion List 우측 분류 및 테마 필터 적용 시, 2.sales KPI의 프로모션 평균이 필터에 해당하는 프로모션의 평균으로 변경됩니다.
대시보드 작동예시 -  프로모션 평균 확인

3. Item datail

좌측의 브랜드별, 카테고리별, 상품별 차트를 클릭해 각 항목에 해당하는 상품의 일자별 판매 현황을 확인할 수 있습니다.

  • 클릭한 항목을 재클릭하면 원본으로 돌아갈 수 있습니다.
대시보드 작동예시 - 상품 세부사항 확인

  • 예시) 상품별 차트에서  Top1 상품 클릭
대시보드 작동예시 - TOP 1 상품 확인

우측 막대그래프에 마우스를 오버하면, 각 일자별 총 매출 및 쿠폰 매출, 총 매출 대비 쿠폰 매출 비율을 확인할 수 있습니다.

대시보드 작동예시 - 쿠폰 및 매출 상관관계 확인

4. Sale Trend & 5.CRM Info

4. Sale Trend에서 프로모션 기간 동안의 총 매출 및 쿠폰 매출, 해당 기간 동안 CRM이 발송된 날짜에 대한 정보를 확인할 수 있습니다.

대시보드 작동예시 - 매출 트렌드 확인

5.CRM Info에서 해당 CRM에 대한 세부 정보를 확인할 수 있습니다.

  • CRM 기준
    1. 전송건수: 10,000건 이상
    2. Campaign Category: RAF, NTC(라플 및 공지) 제외
    3. App: WO (칼하트윕 제외)
대시보드 작동예시 - CRM 현황 및 정보 확인
MARTECH_image_thumbnail
GROWTH

리텐션(Retention)이란?

July 10, 2024

1. 리텐션(Retention)이란?

리텐션(Retention)은 고객이나 사용자가 특정 기간 동안 어떤 제품이나 서비스에 계속 관여하거나 이용하는 비율을 말합니다. 즉, 얼마나 많은 사용자가 시간이 지남에 따라 제품이나 서비스를 계속 사용하는지를 나타내는 지표입니다. 높은 리텐션율은 고객 충성도가 높고, 제품이나 서비스에 대한 만족도가 높음을 의미합니다.

리텐션이 중요한 이유

리텐션을 지속적으로 측정하고 관리하는 것이 중요한 이유는 여러가지가 있습니다. 리텐션은 단순히 고객이 제품이나 서비스를 계속 사용하는 것을 넘어서 기업의 지속가능성과 직접적으로 연결되는 핵심 지표입니다. 리텐션이 중요한 이유를 좀 더 자세히 살펴보면 다음과 같습니다.

  • 비용 효율성
    : 신규 고객을 유치하는 것보다 기존 고객을 유지하는 것이 훨씬 더 적은 비용이 사용됩니다. Harvard Business Review에 따르면 신규 고객 한 명을 확보하는 것이 기존 고객 유지에 비해 5~25배의 비용이 든다고 합니다. 따라서 리텐션을 높이면, 마케팅 및 영업 비용을 절감하고, 장기적으로는 더 높은 수익성으로 이어질 수 있습니다.
  • 수익성 증가
    : 리텐션이 높은 고객은 브랜드에 대한 충성도가 높고, 시간이 지남에 따라 더 많은 제품을 구매하거나 서비스를 이용할 가능성이 높습니다. 이는 평균 거래 규모의 증가, 구매 빈도의 상승, 즉, 총 수익 증가로 이어집니다.

2. 리텐션 측정기준

리텐션을 측정하는 기준에는 다양한 방법이 존재합니다. 그 중 Amplitude에서 확인할 수 있는 리텐션의 종류인 ‘N-day Retention’과 ‘Unbounded Retention’에 대해 좀 더 자세히 알아보려고 합니다.


앰플리튜드 리텐션 차트 화면
‘N-day Retention’과 ‘Unbounded Retention’

2-1. N-day Retention

N-day Retention은 사용자가 처음 제품이나 서비스를 이용한 후 특정 일수(N일) 후에도 계속 이용하는지를 측정하는 방법입니다. 예를 들어, 7-day Retention은 사용자가 서비스를 처음 이용한 후 7일째 되는 날에도 서비스를 이용하는 비율을 의미합니다. 해당 리텐션은 초기 사용자 참여, 온보딩, 새로운 기능, 단기 마케팅 캠페인 분석을 위해 사용됩니다.

2-2. Unbounded Retention

Unbounded Retention은 특정 기간 동안 사용자가 최소 한 번이라도 제품이나 서비스를 이용했는지를 측정하는 방법입니다. 이 방법은 시간이 지나도 사용자가 이탈하지 않고 계속해서 제품을 사용했는지의 여부만을 고려합니다. 해당 리텐션은 장기적인 참여, 고객 충성도, 반복 구매, 주기적인 콘텐츠 업데이트 분석을 위해 사용됩니다.

3. 리텐션 차트&리텐션 커브

3-1. 리텐션 차트란?

앰플리튜드 리텐션 - 코호트 차트


리텐션 차트는 시간에 따른 사용자의 이탈 및 유지 패턴을 시각적으로 표현한 그래프입니다. 이 차트는 특정 기간 동안 사용자 그룹의 리텐션율 변화를 보여줍니다. 리텐션 차트를 통해 크게 행 기준 분석과 열 기준 분석을 수행할 수 있습니다.

앰플리튜드 리텐션 - 코호트 차트 열기준과 행기준 설명
코호트 차트 열 기준 분석
  • 단일 시점에서 코호트 그룹을 비교합니다. 이 방법은 서로 다른 코호트끼리의 비교를 가능하게하여 그룹간의 성과를 측정할 수 있습니다.

코호트 차트 행 기준 분석
  • 일정기간 동안 코호트 그룹을 추적하여 유지율이 어떻게 변하는지 관찰하는 작업으로 장기적인 관점에서 사용자 행동의 추세와 패턴을 이해하는데 도움이 됩니다.

3-2. 리텐션 커브란?

앰플리튜드 리텐션 커브


리텐션 커브는 시간에 따른 리텐션율의 변화를 나타낸 것입니다. 이 커브는 초기 사용자 참여 이후 리텐션율의 감소 패턴을 한눈에 파악할 수 있게 해줍니다.

리텐션 커브는 감소형태에 따라 유형를 크게 3가지로 나눌 수 있습니다.

리텐션 커브 3가지 유형

3-2-1. Declining Curves

시간이 지남에 따라 사용자 참여가 감소되는 패턴의 커브입니다. 이는 가장 흔히 보이는 커브의 형태로, 초기참여 이후 사용자의 관심이 감소됨을 의미합니다.

  • 특징
    • 사용자가 꾸준히 제품을 떠나고 있으며 이는 사용자 만족도나 참여도에 지속적인 문제가 있음을 나타냅니다.
    • 제품이 장기간 사용자를 유지하지 못하고 지속적인 가치를 제공하지 못하는 문제가 있음을 시사합니다.

3-2-2. Flattening Curves

초기 감소 후 리텐션율이 안정적으로 유지되는 패턴의 커브입니다. 이는 사용자들이 제품이나 서비스에 익숙해지고 일정수준의 참여를 계속해서 유지함을 나타냅니다.

  • 특징
    • 초기 감소 후 특정 시점부터 곡선이 평평해 지는데, 이는 나머지 사용자 사이에서 안정적인 유지율을 나타내는 것을 시사합니다.

3-2-3. Smiling Curves

리텐션 감소 후 시간이 지남에 따라 다시 증가하는 패턴의 커브입니다. 이는 매우 긍정적인 상황으로, 사용자들이 초기 이탈후 일정시간이 지나 다시 제품이나 서비스에 관심을 가지기 시작함을 의미합니다.

  • 특징
    • 초기 감소 이후 특정 시점부터 곡선이 상승하기 시작하여 시간이 지남에 따라 사용자가 다시 돌아오거나 참여도가 향상됨을 나타냅니다.
      • 사용자는 처음에는 떠날 수 있지만 제품의 가치를 깨닫거나 업데이트나 재참여 캠페인과 같은 특정 개입으로 인해 다시 돌아올 수 있습니다.

원본 포스팅 링크

리텐션(Retention)이란?

MARTECH_image_thumbnail
GROWTH

구글애널리틱스(GA4)와 앰플리튜드의 차이

July 1, 2024

구글 애널리틱스 vs 앰플리튜드 비교 요약

구글 애널리틱스와 앰플리튜드의 기능, 추적 방식, 분석 항목, 의의와 장단점, 담당자를 비교하자면 하단과 같습니다.  해당 내용의 이해를 위해 차근히 퍼포먼스마케터, 그로스마케터의 직무 요건에서부터 왜 애널리틱스가 중요한지(GA든 Amplitude든) 알아보도록 하겠습니다.

구글 애널리틱스와 앰플리튜드

Google Analytics(구글애널리틱스) vs Amplitude(앰플리튜드)
구글 애널리틱스와 앰플리튜드의 비교 표 이미지


마케터가 하는 일

마케터로 생각하는 직무는 주로 퍼포먼스 마케터일 것입니다. 퍼포먼스마케터, 소위 퍼포마는 브랜드나 대행사(에이전시)에서 마케팅 전략을 수립하고 미디어믹스를 짜고 (매체 별/광고 상품 별로 얼마나 쓸 건지를 짜는 것) 이후 해당 미디어믹스에 따라 광고를 집행한 후에 광고 성과를 관리합니다.

그렇다면 퍼포마의 채용 공고를 분석해 보겠습니다. 퍼포먼스 마케터의 직무 요건 및 우대 사항에는 Google Analytics와 Amplitude가 꽤 자주 등장합니다. 심지어 데이터 분석가 직무에도 있네요. 왜일까요?

  • 발란: 퍼포먼스 마케터 (DA, 5년 이상)
  • 아이디어스: 퍼포먼스 마케터 인턴 (체험형 6개월)
  • 사람인: 데이터 애널리스트 (사업기획팀)

� 마케팅을 잘하기 위해서는 성과 측정도 잘해야 하기 때문입니다.

발란의 퍼포먼스마케터 직무
발란의 퍼포먼스마케터 직무

백패커의 마케팅 인턴 채용 공고
백패커의 마케팅 인턴 채용 공고

사람인의 데이터 분석가(Data Analyst) 채용 공고
사람인의 데이터 분석가(Data Analyst) 채용 공고


어트리뷰션 Attribution? 애널리틱스 Analytics?

한 건의 전환이 일어나기까지, 한 명의 사용자에게 노출되는 광고는 수도 없이 많습니다. 마케팅을 열심히 할수록 그렇습니다. 사용자가 1) 인스타그램 광고도  볼 거고, 2) 유튜브 콘텐츠를 봤을 수도 있고, 3) 카카오 배너 광고를 봤을 수도 있고, 4) 네이버 검색 광고를 봤을 수도 있습니다. 이렇게 수많은 광고 매체를 거쳐, 한 건의 전환이 일어났을 때 가장 중요한 질문은 무엇일까요?

고객 전환까지의 채널 여정
그래서 누가(=어떤 광고 매체가) 잘했는데? 결정적 기여가 누구 건데?

다수의 광고 매체들은 다 자기가 기여를 했다고 말합니다. 그래서 광고 관리자로만 광고 성과를 보면 과도하게 성과가 집계될 수밖에 없고, 중복 집계될 수밖에 없는 것입니다.

일주일 안에 저 광고 매체들에 다 노출되었던 사용자가 전환을 했다고 가정해 볼까요? 그렇다면  기여 기간은 7일인 것이고 (광고 매체의 성과를 인정해 주는 기간) 노출된 매체는 4개, 그중 유상(Paid) 광고 매체 3개입니다. (유튜브 콘텐츠는 자사의 브랜딩이었다고 하면요.)

그럼 그중 누가 이 전환의 성과를 가져갈까요?

� 기여 모델에 따라 다릅니다!

  • First touch Attribution: 첫 번째 접점을 만들어 낸 광고 매체에게 기여/성과를 인정하는 것
  • Last touch Attribution: 마지막 접점을 만들어 낸 광고 매체에게 기여/성과를 인정하는 것
    *First와 Last는 한 개 매체만 인정해 주기 때문에 Single-touch라고도 합니다.
  • Multi touch Attribution: 접점을 만들어 낸 여러 매체들에게 가중치를 주어 기여/성과를 인정하는 것

Single-touch attribution models

이렇게 광고 성과의 기여값을 보다 정확하게 측정하기 위해서 Attribution Tool(어트리뷰션툴), Analytics(애널리틱스)가 존재합니다. Web Analytics로 가장 유명한 것이 구글 애널리틱스인 것이고요.

글의 초반 앰플리튜드 vs 구글애널리틱스 비교표에서 언급했었죠. 구글 애널리틱스는 이처럼 광고 매체들의 전환값의 기여도를 측정하여 마케팅을 효율화하는 것을 목적으로 많이 활용합니다.

광고 성과에 '기여'한 정도를 '분석'하기에 Attribution과 Analytics가 쓰입니다.


'전환'이 어디서 일어나는데?

여기서 또 하나 짚어야 할 것이 있습니다. 그 광고, 클릭하면 어디로 가나요? 클릭해서 이동한 페이지에서 보통 전환이 일어날 테니까요.

광고 클릭하면 당연히 웹페이지로... 아니지 요즘은 앱스토어로...
아니지 요즘은 앱 안의 페이지가 열리던데?

  • 웹(Web) 랜딩(*Landing = 착륙, 이동)            
    우리에게 가장 친숙한 웹페이지로 랜딩 되는 것이 일반적입니다.
  • 앱(App) 랜딩
    최근에는 앱 설치를 유도하며 앱스토어 페이지로 랜딩 되거나 앱이 설치되어 있다면 앱 내의 특정 페이지로 랜딩 되기도 합니다.
  • 웹투앱 (Web to App) 
    혹은 웹으로 먼저 랜딩 시킨 후에 여러 혜택을 소구하여 앱을 설치하게끔 하기도 합니다.


웹에서 앱으로, Web to App에서 사라지는 데이터

마케팅 캠페인이 '웹'에 치중되어 있을 때는 구글애널리틱스의 시대였습니다. 그렇지만 '앱'이 뜨기 시작하고 앱마케팅이 활성화되면서 구글애널리틱스 또한 한계에 부딪힙니다.

� 웹 랜딩 후 앱 설치를 한 유저 데이터에 광고 매체의 소스값이 적혀있던 utm이 유실되기 때문입니다

구글애널리틱스, 앰플리튜드, 미디어의 Attribution 비교 1

웹으로 랜딩 된 후 구매라는 전환 행동이 일어날 때 구글 애널리틱스는 Last touch 기여 설정에 의해서, 해당 전환의 성과는 '페이스북'에게 있다고 측정했습니다.

구글애널리틱스, 앰플리튜드, 미디어의 Attribution 비교 2

그런데 웹 랜딩 이후 앱 설치가 진행되고 앱에서 구매가 일어나면 어떻게 될까요? 사용자의 흔적을 파악할 수 있던 utm (광고 매체의 소스값)이 유실되며 광고 매체의 성과를 잡지 못하고, organic (자연 유입)으로 측정하게 됩니다.

cf. 여기서 utm의 광고 매체 소스값이란...?

구글에 나이키를 검색하면 '스폰서' 광고로 나이키가 뜹니다. 이걸 클릭하면 url이 이렇게 나옵니다.

https://www.nike.com/kr?utm_source=Google&utm_medium=PS&utm_campaign=365DIGITAL_Google_SA_Keyword_Main_PC&cp=72646825390....  > utm_source=Google이라고 알려줍니다. (소스값) utm_medium=PS라고 알려줍니다. (매체) 이 두 개의 조합을 광고 매체의 소스값이라고 합니다.

구글 나이키 검색 결과 페이지 - utm 소스


그래서 쓰는 MMP와 PA

그래서 앱 마케팅이 중요해질수록 MMP와 PA의 인지도 또한 높아질 수밖에 없습니다. MMP는 Mobile Measurement Partners로 앱스토어에 SDK를 붙여 앱 설치 성과를 측정해 주는 솔루션을 말하고, PA(Product Analytics)는 이러한 MMP들을 연동하여 앱 설치 성과를 분석할 수 있도록 도와줍니다.

MMP와 PA 역할 및 솔루션

GA는 Web 위주의 유입 성과 분석툴,
Amplitude는 App 위주의 사용자 행동 분석툴

서비스가 Web 위주인 경우 구글애널리틱스만 사용해도 충분합니다. 다만 App 위주인 경우 App 설치 성과를 분석하는 MMP (Appsflyer, Adjust, Airbridge 등)와 Web to App을 추적하고, App 내 사용자 행동을 분석하는 PA(Amplitude, Mixpanel 등)가 필요합니다!

유저의 웹 to 앱 여정과 마테크 솔루션

풀스택 마케팅 컨설팅펌 마티니아이오

https://martinee.io/

원본 포스팅 링크

구글애널리틱스(GA4)와 앰플리튜드의 차이

MARTECH_image_thumbnail
GROWTH

앰플리튜드(Amplitude) Segment Chart

June 28, 2024

프로덕트 분석/성과 분석 툴

그로스마케팅의 기본은 분석입니다. 분석 툴, 주로 Analytics라고 많이 이야기하죠. Google Analytics가 대표적이고요. 이외 Product Analytics라고 했을 때 Mixpanel(믹스패널), Amplitude(앰플리튜드) 등의 솔루션이 있습니다.

Google Analytics(구글애널리틱스), Mixpanel(믹스패널), Amplitude(앰플리튜드) 로고


프로덕트 분석이 뭔가요?

프로덕트 분석은 사용자들이 디지털 프로덕트를 쓰는 방식을 이해해보는 것입니다. 사용자의 행동 데이터를 분석하고, 전환 기회를 파악하고, 사용자의 평생 가치(LTV: Long Time Value)를 높이는 경험을 만들어 사용자를 비즈니스의 핵심으로 만듭니다.

프로덕트 분석을 통해 사용자의 실시간 참여 및 행동 데이터를 추적, 시각화, 분석하여 전체 고객 여정(User Journey)을 최적화할 수 있습니다. 사용자의 라이프사이클 모든 단계를 데이터로 확인하여 디지털 경험을 개선하고, 충성도를 확보하고, 비즈니스 성과로 연결하도록 지원합니다.

전체 고객 여정(User Journey) 예시

(사용자 여정 예시) 광고를 클릭하고 ~ 계정을 생성하고(Onboarding Process라고 함) ~ 가입하고 ~ 기능 A를 경험하고 ~ 모바일로 로그인하고 ~ 첫구매를 하고 ~ 기능 B를 경험하고 ~ 기능 C를 경험하고 ~ 앱푸시를 받고 ~ 구독할 것 같은데 ~ A/B 테스트를 경험하고 ~ 파워 유저가 되고 ~ 남에게 추천하고...

위와 같은 사용자 여정 중에서 하기 질문에 앰플리튜드를 통해서 답할 수 있습니다.

  • Why do users convert or dropoff? (사용자가 전환하거나 이탈하는 이유는 무엇일까요?)

  • Which featurees predict likelihood to buy? 구매 가능성을 예측하는 기능은 무엇인가요?
    *커머스라면 대개 상품/브랜드 찜하기, 장바구니에 상품 담기가 그 기능입니다.

  • What is the cross-device user journey? 크로스 디바이스 유저의 여정은 무엇인가요?
    보통 Web to App으로 Mobile/Web에서 프로덕트를 경험하다가 App을 설치하고 App으로 넘어갑니다.
    *대개 여기서 데이터가 유실됩니다.

  • How did our launch impact monetization? 출시가 수익 창출에 어떤 영향을 미쳤나요?

  • Who are our highest value customers? 우리의 최고 가치 고객은 누구입니까?
    *가치가 가장 높은 고객군의 특성을 알아야, 그 고객군과 유사한 고객들을 더 데려올 수 있고 혹은 기존 고객들이 그 고객과 유사한 행동을 하게끔 유도해야합니다.

  • How likely is churn within user cohorts?사용자 집단 내에서 이탈할 가능성은 얼마나 되나요?
    *이탈 지점과 시점을 알고 있어야 이를 방지하거나 개선할 수 있습니다.


커머스의 필수 지표: 매출, 주문수, 건단가, 객단가

프로덕트 분석이라고 하면 거창해 보이지만 실전은 생각보다 단순합니다. 커머스에서 가장 중요한 지표가 무엇일까요? 바로 매출/주문수/객단가/건단가입니다.

매출=주문수X건단가, 매출=주문자수X객단가 개념으로, 결국 '매출'이 가장 중요한데요.

동일한 매출을 기준으로 주문수가 많아지면 건단가가 낮아지고, 건단가가 높아지면 주문수가 적어집니다. 아주 당연한 얘기지만, 이 내용이 무엇과 연관이 있을까요? 바로 물류비입니다.

건단가가 낮아서 주문수가 많아지면 택배 물량이 많아집니다. 물론 합배송이 가능하냐, 물류 체계가 자체 배송이냐 위탁 배송이냐, 물류 센터가 있느냐 등에 따라 상황은 다를 수 있겠지만 대개 커머스는 주문수와 건단가 중 굳이 택한다면, 건단가를 높이고 주문수를 줄이는 것이 좋습니다. (객단가는 유저수와 객단가를 둘 다 올리는 게 좋고요...ㅎㅎ)


앰플리튜드(Amplitude)의 Segment Chart 만들기: 매출, 주문수, 객단가, 건단가

*매출, 주문수, 객단가, 건단가 차트 모두 '주문 완료'/'구매 완료'/'결제 완료' 와 같은 이벤트와 '주문 금액'/'구매 금액'/'결제 금액'을 뜻하는 이벤트 프로퍼티가 필수입니다.

*여기서 이벤트와 프로퍼티는 모두 개별적으로 설정되는 것으로 통용되는 단어가 아님을 참조해주세요.

1️. 매출 차트 그리기

1. Segmentation by 에서 주문 완료 이벤트를 설정해줍니다.

해당 택소노미에서는 total_items_order_completed 가 주문 완료/결제 완료 이벤트입니다.

그리고 by order_total 이라는 이벤트 프로퍼티를 사용하여 값을 표현해줍니다.

2. ...performed by Any Users는 따로 설정하지 않아도 됩니다. (전체 유저의 매출을 보는 것이고, 특정 유저의 행동을 보고자 하는 것이 아니니까요.)

3. ...measured as 에서 'Properties'를 선택하고 Sum of Property Value를 설정합니다.

4. 일자까지 설정해주면 그래프가 구현됩니다!

5. 그래프 하단에는 데이터 테이블이 표 형식으로도 나오고, 이는 CSV로 다운로드 받을 수 있습니다.

앰플리튜드로 구현한 매출 차트
앰플리튜드로 구현한 매출 차트

매출은 'order_total'이라는 이벤트 프로퍼티의 값(value)를 더한 것이기에
… measured as Sum of Property Value로 설정합니다.

2️. 주문수 차트 그리기

주문수는 쉽습니다! ...measured as Sum of Property Value를 Event Property로 바꿔주면 됩니다.

매출이 구매 이벤트의 금액의 총합이었다면, 주문수는 이벤트가 발생한 수이기 때문입니다.

앰플리튜드에서 구현한 주문수 차트 (+grouped by order_total)
앰플리튜드에서 구현한 주문수 차트 (+grouped by order_total)

Event Totals로 바꿨는데 그래프가 조금 이상하죠? order_total이라는 주문금액값이 grouped by 필터로 걸려있어서 그렇습니다. 금액값 별로 어떻게 구성되어져있는지 보여주는 거죠. 해당 필터를 지워주면 됩니다.

앰플리튜드로 구현한 주문수 그래프
앰플리튜드로 구현한 주문수 그래프

3️. 객단가 차트 그리기

객단가는 매출/주문자수입니다. 그러므로 매출=주문완료 이벤트(+order_total 프로퍼티)의 PROPSUM (PropertySUM)/주문완료 이벤트의 유니크(사용자수)로 수식을 만들어서 적용하면 됩니다. 즉 객단가는 PROPSUM/UNIQUES입니다.

객단가의 추이를 과거와 비교할 수도 있습니다. Comparing to date range ending _ 여기서 일자를 설정하여 두 개의 그래프로 구현되도록 할 수 있습니다. 과거 일자와 비교하면 그 시점의 유저가 **[Previous]**로 표시되고, 이후 시점의 유저가 All User로 표시됩니다.

앰플리튜드 객단가 차트 그리기

4️. 건단가 차트 그리기

건단가는 매출/주문수입니다. 그러므로 주문완료 이벤트의 속성값, 주문액 평균을 확인하면 됩니다. ...measured as Average of Property Value로 설정해줍니다.

앰플리튜드 건단가 차트 그리기

건단가는 주로 프로모션을 진행할 때 부차적으로 확인합니다. 평상시 대비 프로모션 진행 시에 카테고리/브랜드/상품/장바구니 할인 쿠폰이 발급되어 건단가가 낮아지는 경우가 많기 때문입니다.

건단가/객단가는 대개 유사합니다. 다만 예외도 존재합니다. 리셀러가 커머스에 많은 경우, 상품을 대량하는 구매하므로 경우 주문수가 주문자수보다 월등히 많아 건단가는 낮고, 객단가는 높을 수 있습니다.

건단가/객단가는 시즈널리티를 탑니다. 특히 의류 커머스의 경우 S/S에는 반팔 티셔츠가 주가 되기에 객단/건단이 낮아지고, F/W에는 아우터 상품이 메인이 되면서 객단/건단이 높아집니다.


앰플리튜드 대시보드 예시

대시보드 한 판에 차트들을 모을 수 있습니다. 매출도, 구매전환율도, 상품수도 여러 필터로 쪼개보면서 프로덕트의 현황을 확인할 수 있습니다.

앰플리튜드 대시보드 예시


분석 내용 공유하기

앰플리튜드 차트로 확인한 데이터들은 구글 스프레드시트로 이전 성과들과 비교하거나, 노션으로 정리하거나, 간단하게는 슬랙으로 정리하여 공유합니다.

분석 내용 공유 예시

참 쉽죠...?

그로스마케터가프로모션/쿠폰 분석을 하는 과정 중에 앰플리튜드로 세그먼트 차트 (커머스에 꼭 필요한 매출, 주문수, 건단가, 객단가) 그리는 법을 알아보았습니다! 감사합니다.

풀스택 마케팅 컨설팅펌 마티니아이오

https://martinee.io/

원본 포스팅 링크

앰플리튜드(Amplitude) Segment Chart

MARTECH_image_thumbnail
EVENT

[그로스 캠프] Ep.2 Amplitude by Martinee (24.6)

June 28, 2024

Amplitude, 아직도 어렵다면?

행사명 : [그로스 캠프] Ep.2 - Amplitude by Martinee

장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F

일시: 2024년 6월 5일 ~ 6월 26일 매주 수 오후 7시

대상

  • Amplitude의 주요 기능들을 포함하여 기초 개념부터 실무 활용까지 배우고 싶은 분
  • Amplitude 기반 그로스 마케팅에 관심이 있으신 분

어떻게 진행하였나요?

Image 1 Image 2
그로스 캠프 2기 세션 시작 전 현장 모습

 [그로스 캠프] Ep.2 Amplitude by Martinee 수강생

그로스 캠프 2기는 웨비나 없이 LV. 1, LV. 2, LV. 3, LV. Expert 총 4번의 세션으로 진행되었고, 레벨이 올라갈수록 실무에 활용가능한 앰플리튜드의 고급 기능까지 배웠습니다.

실습 세션의 경우, 실무에 바로 적용 가능하도록 데모 계정을 통해 직접 앰플리튜드의 차트와 기능을 살펴보았습니다.

세부적으로 확인하고 싶은 유저 데이터를 직접 세팅해보고 집계 기간에 따른 차이를 살펴보며 앰플리튜드 차트 활용 시 주의할 점들까지 알아보았습니다.

 [그로스 캠프] Ep.2 Amplitude by Martinee 퀴즈 화면
LV. 2 세션 퀴즈 시작 화면

각 세션 이후에는 간단한 퀴즈를 통해 배웠던 내용을 쉽게 잊지 않을 수 있었습니다.

마티니 앰플리튜드 유저 가이드북 표지
마티니 앰플리튜드 가이드북 표지

후기 포스팅을 포함하여 적극적으로 참여해주신 분들께는 마티니가 직접 만든 108장 분량 앰플리튜드 가이드북까지 전달드려서 캠프 종료 후에도 앰플리튜드 기능들을 하나씩 적용해보실 수 있습니다.

이렇게 아낌없이 전수해드리는 그로스 캠프, 다음 번엔 놓치면 안되겠죠?

어떤 것들을 배웠나요?

앰플리튜드 필수 차트 살펴보기

Image 1 Image 2
LV.1 세션 실습 모습

 [그로스 캠프] Ep.2 Amplitude by Martinee 강사 이재철

LV.1 ‘탐색적 데이터 분석(EDA)과 가설 발견을 위한 분석 기초’ 세션에서는 앰플리튜드를 다루기 전에 알아야 할 사항과 앰플리튜드의 활용 목적, 구조, 데이터 택소노미 (Data Taxonomy) 설계에 대해 알아보았고 앰플리튜드의 필수 차트인 세그멘테이션 (Segmentation)과 퍼널 (Funnel), 리텐션 (Retention) 차트를 활용하여 분석 기초를 진행해보았습니다.

차트 기능들을 활용할 때는 앰플리튜드에서 정의한 모듈과 필터의 역할을 명확하게 이해해야 하는데요. 이벤트, 유저, 메트릭 모듈 등 그룹을 쪼개고 측정 기준을 정의할 때 Uniques, Active %, Average, User & Event Property 등이 각각 어떤 의미를 가지고 있는지와 라인, 영역, 바 차트들을 어떤 상황에서 활용하는지 배웠습니다.

세부적으로 예시 사례를 기반으로 한 예제 문제 실습을 통해 각 차트별 적합한 활용법을 익혀보는 시간이었습니다.

Segmentation
  • 구매가 많이 발생하는 날의 브랜드별 매출 비중 차이를 확인
  • 프로모션 진행 전후 매출 차이 확인
  • 푸쉬 메시지 타입별 구매 영향도 확인
Funnel
  • 유저별 구매 전환까지 걸리는 시간을 확인
  • 전환까지의 유저 여정 분석
  • 이벤트가 가장 많이 일어나는 파트 확인
Retention
  • 주요 이벤트 및 서비스 사용 간격 및 빈도 점검
  • 핵심 이벤트(Critical Event) 유효성 점검
  • 측정 기준을 통한 시계열 트렌드 확인

내 유저 살펴보기

Image 1 Image 2
Image 1 Image 2
그로스팀 리드 재철님의 LV.2 세션 강의

Image 1 Image 2
LV.2 세션 실습 모습

LV.2 ‘Cohort / LTV / Lifecycle 분석을 활용한 제품 분석 & 유저 분석 심화’ 세션에서는  DAU & MAU와 LifeCycle, Revenue와 LTV, Sign up과 Engagement를 살펴보고 코호트 (Cohort) 분석 정의와 활용에 대해 알아보았습니다.

MAU를 확인할 때는 실질적으로 성장하고 있는지 잘 확인해야 하는데 Formula 기능을 사용하여 서비스의 MAU가 성장하고 있는지를 세그먼트 차트(Segment Chart)를 직접 활용해보며 확인해보았습니다. 라이프사이클 차트(Lifecycle Chart)를 통해서 휴면, 이탈, 유입 사용자의 비중을 살펴보며 실질적으로 MAU가 성장하고 있는지 점검할 수 있었습니다.

하지만 유저 라이프사이클은 매출을 보장해주지 못하기에 LTV까지 꼭! 확인해야 한다는 사실을 잊지 마세요!

코호트 차트 기능을 통해서는 유저의 시계열 데이터를 확인하고 인사이트를 도출할 수 있는데요.

  • 음악  스트리밍앱에서 7일차에 3곡을  즐겨찾기한  사용자
  • 온보딩  중  푸시  알림을  활성화한  사용자
  • 커머스  웹사이트에서  가입  후 7일  내  구매한  사용자

위 예시와 같이 유저 별 행동들을 상세하게 쪼개서 살펴볼 수 있습니다.

지난 한 달 동안 장바구니에 상품을 담았지만 구매는 하지 않은 유저 분석, 회원가입 이후 7일 이내 구매를 하는 유저와 아닌 유저를 비교해보는 예제를 통해 코호트 차트를 활용해보았습니다.

코호트를 메타나 CRM툴로 보내주기까지 한다면 매우 잘 활용할 수 있게 되겠죠!

내 서비스 성장시키기

Image 1 Image 2
그로스팀 리드 재철님의 LV.3 세션 강의

Image 1 Image 2
LV.3 세션 실습 모습

LV.3 ‘비즈니스 성장을 위한 유저 여정 분석(AARRR)과 그로스 모델링’ 세션에서는 앰플리튜드에서 대시보드를 구축하는 과정과 AARRR 프레임 워크(Framework)의 각 단계인 획득 (Acquisition) , 활성화 (Activation), 수익 (Revenue), 재방문 (Retention), 추천 (Referral)의 유저 여정 분석과 그로스 모델링에 대해 배우는 시간을 가졌습니다.

Acquisition
  • LTV/CAC 확인
Activation
  • DAU/MAU 확인
  • 퍼널 별 전환율 확인 후 개선
  • 아하 모먼트(Aha moment) 찾기
Revenue
  • ARPU & ARPPU 확인
Retention
  • 내 서비스 주요 이벤트 찾기
  • 제품 사용 간격 찾기
Referral
  • 입소문 효과 계수 측정

환경 구축하기

Image 1 Image 2
그로스팀 리드 재철님의 LV.Expert 세션 강의

Image 1 Image 2
Image 1 Image 2
LV.Expert 세션 실습 모습

LV. Expert 'Performance & CRM & Growth 분석에 대한 실행을 위한 마케팅 분석 & 자동화 Case Study' 세션에서는 MMP & PA & CRM 솔루션의 연동을 통한 통합 마케팅 환경을 구축하는 이유와 방법에 대해 그 중요성과 과정을 세부적으로 실제 기업 사례를 통해 알아보았습니다.

제품을 많이, 잘 판매하기 위해서 프로모션을 진행하는데 발생하는 매출에 대해 정말 프로모션의 영향인지 확인하기 위해 증분 분석을 진행합니다. Amplitude 퍼널 차트를 통해 실험 집단을 분리해서 A/B 테스트를 진행하여 프로모션의 유효성을 검증하는 과정 공유해드렸습니다.

이외에도 클러스터링 기능을 통한 라플 유저와 일반 유저의 여정 분석 및 비교 방법과 연관 규칙 분석을 통한 카테고리 내 상품별 연관성을 파악하는 방법에 대해서도 배웠습니다.

앰플리튜드 Amplitude 기초자격증 배지 획득 화면

궁금한 것이 있다면?

Image 1 Image 2

살펴본 데이터가 비즈니스에 따라 상이하거나 세션 중 어려운 부분이 있어도 QnA를 통해 상세하게 답변드리고 함께 살펴보며 자신의 비즈니스에 적합한 최적의 활용법을 익힐 수 있는 시간이었습니다.

참여자 후기를 확인해보세요!

 [그로스 캠프] Ep.2 Amplitude by Martinee 종료 후 단체사진

그로스 캠프가 1기에 이어 2기까지 1달 동안 많은 분들의 적극적인 참여 속에 마무리 되었습니다.

LV. 1 세션부터 마지막까지 많은 분들깨서 남겨주신 후기를 확인해보세요!

 [그로스 캠프] Ep.2 Amplitude by Martinee 만족도 결과
최종 만족도 조사 결과

마티니가 여러분의 비즈니스 성공을 위해 언제나 함께 합니다.

마티니가 진행한 다른 세미나들이 궁금하다면?

마티니 이벤트 확인하러 가기!

MARTECH_image_thumbnail
GROWTH

그로스마케팅 앰플리튜드(Amplitude) 부트캠프

June 24, 2024

그로스마케팅이란?

그로스마케팅은 그로스해킹(Growth Hacking) 기법을 기반으로 Growth, 성장을 위해 마케팅하는 것입니다.

성장을 위해 가장 필요한 정보는 무엇일까요? 사용자에 관한 것입니다. 누가 어떻게 사용했는지 알아야, 그 사람과 유사한 사람들을 더 불러올 것이고 (=유입) 어떻게 사용했는지 알아야 어디서 이탈했는지를 찾아 그 지점을 개선시킬 수 있을테니까요.

즉 그로스해킹과 그로스마케팅의 근간은 사용자와 데이터입니다.

사용자 행동을 데이터로 남기고, 이를 분석하여 서비스 개선의 근거로 삼는 것이죠. 사용자의 행동을 이벤트(Event) 혹은 로그데이터 (Log data)라고 이야기하는데요. 이 로그데이터를 분석할 수 있는 툴/솔루션 중 하나가 앰플리튜드(Amplitude)입니다.

앰플리튜드 누가 쓰냐구요? 오늘의집도, 올리브영도, 무신사도 씁니다.

오늘의집에서 확인할 수 있는 앰플리튜드 이벤트(Event)
오늘의집에서 확인할 수 있는 앰플리튜드 이벤트(Event)

오늘의집에 모바일 버전으로 유입되어 제가 한 행동들 (프로모션 Viewed > 콘텐츠 Viewed > 프로모션 Viewed )이 수집되는 것을 확인할 수 있습니다.

이렇게 PC/Web이든 Mobile/Web이든 App이든, 어떤 플랫폼에서든 사용자가 한 행동을 수집하여 분석할 수 있습니다. 사용자 행동 분석은 그로스해킹, 그로스마케팅의 기본이니까요.

그로스마케팅 툴, 앰플리튜드(Amplitude)를 배우고자

그로스마케터, 개발자, 서비스기획자, 퍼포먼스마케터, CRM마케터 등 다양한 직무의 실무자들이 모입니다.

앰플리튜드를 더 잘 사용하기 위해 마티니에서 개최한 앰플리튜드 부트캠프 1기에는 김과외, 당근마켓, 사람인, 잡코리아, 현대홈쇼핑, 비소나이, 타이어픽, CJ올리브영 등의 재직자 분들이 오셨었습니다. 마케터를 지망하는 취준생도, 이제 막 취업한 신입도 아닌 유니콘 스타트업의 연차가 있는 실무자들이 앰플리튜드를 배우기 위해서 모입니다.

 앰플리튜드 부트캠프 1기 현장 모습
 앰플리튜드 부트캠프 1기 설문 응답 시트

사용자를 이해하고 분석하여 그로스(Growth)를 도모합니다.

앰플리튜드(Amplitude)를 학습하고, 도입하고, 활용하고자 하는 이유는 대다수 유저 분석을 위함입니다. 그렇다면 유저 분석은 어떻게 할 수 있는 것일까요?

 앰플리튜드 부트캠프 1기 세션 모습
 앰플리튜드 부트캠프 1기 응답 시트 내 유저 분석 검색 결과
유저 분석의 필요성을 모두가 알고 있습니다.


이벤트(Event)와 프로퍼티(Property)를 수집하여 현황을 분석합니다.

(1) 사용자의 행동(Event)만 수집하면 구매수가 늘어난 현상에 대해 발견할 수 있습니다. '구매'를 Event로 수집했을 때입니다.

이벤트 예시

(2) 사용자의 행동(Event)에 행동과 관련된 추가 속성값(Property)를 수집하면

좀 더 자세한 정황을 파악할 수 있습니다. '구매'라는 Event에 Event Property로 Brand_name이 추가로 수집되었을 때입니다. 구매수가 실제 증가한 브랜드는 'Nike'이고 'Vans'는 감소했다는 것을 알 수 있습니다. Nike의 반응도가 높으니 재고를 미리 확인해두면 좋겠죠? 현상을 분석하여 이후 상황에 적절한 대응을 취할 수 있습니다.

이벤트 및 프로퍼티 예시

(3) 사용자의 행동(Event)에 행동과 관련된 추가 속성값(Property) 그리고 사용자와 관련된 속성값(User Property)를 수집하면 가장 자세하게 현황을 분석할 수 있습니다.

이벤트 및 프로퍼티 예시 2

17일에서 18일의 구매수 증가에 기여한 구매 내역은 meta로 유입된 신규 유저의 Nike 구매입니다. (30건에서 70건으로, 200%이상 증가) organic으로 유입된 기존 유저의 Nike 구매는 이틀 간 동일했고, organic으로 유입된 기존 유저의 Vans 구매는 60건에서 40건으로 감소했네요.

즉 Nike의 구매수가 늘었다라는 분석이, meta 광고에 의해 유입된 신규 유저들의 Nike의 구매수가 늘었다. 라고 훨씬 자세해졌습니다.

구매수 100 > 120, 20%의 증가가 있었다라는 표면적인 확인에서 Nike 브랜드 증가가 일어났다는 조금 더 깊이있는 확인으로 어떤 경로에 의해 어떤 특성을 가진 유저에 의한 구매수 증가였는지까지 분석이 가능해진 것이죠.

분석이 깊이있을수록 전략과 실행방안도 구체성을 가집니다. 메타 광고에 의해 유입된 신규 유저들의 증가세가 확인되었으니, 해당 광고 매체를 활성화시키는 것이 좋겠죠. 어떤 광고 소재가 좋은 효율을 가져왔는지 분석하고 그 소재를 베리에이션하여 (다양한 버젼으로 만들어보는 것) 예산을 증액하여 광고를 운영해자는 실행 방안이 나오기 쉬워집니다.


서비스 내 주요 이벤트(유입, 조회, 가입, 구매 등) 분석하고 마케팅하기

이벤트와 이벤트 프로퍼티, 유저 프로퍼티 등의 설계가 완료되면 (이를 총칭하여 택소노미, taxonomy를 설계한다고 합니다.) 차트를 구성하여 주요 지표들의 수치를 확인할 수 있습니다.

회원가입수_연령별

가입완료(Event:sign_up_completed)수를 나이(User Property:user_age)로 나눠볼 수도 있고요.

(예시) 데이터 분석을 기반한 퍼포먼스마케팅

가입 관련 데이터 분석을 했을 때, 서비스 내의 유입 대비 가입 전환율이 30대가 가장 높다면 퍼포먼스마케팅 광고의 타겟 대상을 30대로 집중해준다면 동일 비용 대비 좀 더 광고 효율이 높아지겠죠?

연령별 회원가입 수

회원가입수_연령별 주문수_신규/기존유저

주문완료(Event:order_completed)수를 유저 상태(User Status: New or not)로 나눠볼 수도 있습니다.

신규와 기존 주문데이터 영역차트

(예시) 데이터 분석을 기반한 CRM마케팅

주문수의 유저 비중을 확인했을 때 절대적으로 기존 유저의 비중이 높기 때문에 두 가지 방안을 생각할 수 있겠는데요.

(1) 비중이 낮은 신규 유저의 구매 활성화를 위해서 신규 유저 타겟으로 추가 쿠폰을 발급하는 프로모션을 운영하고 이를 홍보하는 CRM 마케팅을 진행할 수 있겠습니다.

29CM 데이터 분석을 기반한 CRM마케팅 예시

혹은 (2) 비중이 높은 기존 유저의 구매수를 더 장려하기 위해서 기존 유저들이 선호하는 브랜드의 신상품 런칭 소식을 알려주는 CRM 마케팅을 진행할 수도 있겠고요.

도미노피자 카카오톡 알림톡 CRM 마케팅 예시

앰플리튜드가 그로스마케팅의 정답일 수는 없습니다.

그로스해킹과 그로스마케팅에 쓰여지는 수많은 마테크 솔루션 중 하나일 뿐입니다. 앰플리튜드(Amplitude)는 프로덕트 애널리틱스로 (행동 분석 솔루션) 유용한 것인지, 만능인 것은 아닙니다. 솔루션의 사용이 성장을 보장해주지는 않습니다. 그러나 사용자를 더 잘 이해하는 것은 서비스의 개선 그리고 성장과 직결될 것입니다.

마테크 솔루션 분류 이미지
 앰플리튜드 부트캠프 1기 표지

앰플리튜드 부트캠프는 현재 2회차까지 진행되었으며 (1회차 격주 2시간씩 2회 운영) 다음 일자는 24년 1월 정도로 예정되어 있습니다. 마티니의 링크드인이나 인스타그램을 통해 소식을 공유받으실 수 있습니다.

링크드인 https://www.linkedin.com/feed/update/urn:li:activity:7103207584077139968

인스타그램 https://www.instagram.com/martinee_official/

홈페이지 https://martinee.io/

풀스택 마케팅 컨설팅펌 마티니아이오

https://martinee.io/

원본 포스팅 링크

그로스마케팅 앰플리튜드(Amplitude) 부트캠프

MARTECH_image_thumbnail
GROWTH

퍼포먼스마케팅이란? 성과 측정이 가능한 것!

June 19, 2024

소위 퍼포마 라고도 부르는 퍼포먼스마케팅에 대해서 얘기해보려고 합니다. 마케팅이라는 개념이 워낙 넓어서인지 다소 모호하게 느껴질 때가 많은데요.

현직 그로스마케터의 입장에서 퍼포먼스마케팅의 개요와 사례에 대해 최대한 구체적으로 소개해보겠습니다. 퍼포먼스마케터를 준비하시는 취준생 분들 혹은 이미 마케터로 일하는 분들께도 도움이 되었으면 합니다.

일상에서 쉽게 만나볼 수 있는 마케팅

마케팅은 모든 곳에 있습니다. 출근 길, 지하철에서 본 스크린도어 광고도 마케팅이고요. 인스타그램 스토리를 넘기다보면 나오는 브랜드의 블랙프라이데이 할인 광고도 마케팅이죠.

지하철 스크린도어 옥외광고 (OOH)
지하철 스크린도어 옥외광고 (OOH)

거실 방에 틀어져있던 TV에서 본 TV CF도 마케팅, 핸드폰으로 뉴스를 볼 때 옆에따라다니는 이미지들도 마케팅입니다. 엊그제 무심코 온라인 커뮤니티 글에서 읽었던 글이 마케팅일 수도 있을겁니다.

퍼포먼스마케팅이란? 성과 측정이 가능한 마케팅!

Performance Marketing이란 '성과'에 초점을 맞춘 마케팅입니다. 위에 예시로 들었던 마케팅들 중에서 성과를 명확히 알 수 있는 마케팅은 무엇일까요?

1) 지하철 스크린도어

2) 인스타그램 스토리

3) TV CF

4) 온라인 뉴스 배너 광고

5) 온라인 커뮤니티 글

몇 명에게 보여졌을까요? 그리고 몇 명이 진짜로 '봤을까요?' 그리고 몇 명이 그냥 본 것 외에 (수동적 차원) 다음 행동을 했을까요? (적극적 차원)

1) 스크린도어, 3) TV CF, 5) 커뮤니티 글의 경우 광고 노출 = 광고 조회라고 보기 애매합니다.

1)의 경우는 지나쳤을 뿐 진짜 보지는 않았을 수 있으니까요.

3) 또한 마찬가지입니다. 광고가 틀어져있었을 뿐 시청자는 자리를 비웠을 수도 있고요.

5)의 경우는 글 내에 다음 행동을 유도하는 장치가 있냐 없냐에 따라 달라질 수 있겠네요.

2) 인스타그램 스토리, 4) 뉴스 배너 광고는 광고 노출수, 다음 행동을 유도하는 영역의 클릭수, 이후 전환수와 전환율 등 성과로 볼 수 있는 다양한 수치를 확인할 수 있습니다.

즉 여기서는 2) 인스타그램 스토리와 4) 뉴스 배너 광고를 퍼포먼스마케팅이라고 볼 수 있겠네요.

포인트는 광고를 봤다는 것을 증명할 수 있는가?입니다.

인스타그램 스토리나 뉴스 배너 광고의 경우 증명할 수 있습니다. 그 브랜드나 상품에 흥미가 생겼을 때, '클릭'하게 되니까요. CTA (Call To Action)이라고 하는 행동 유도 장치 버튼을 통해서요.

Image 1 Image 2
인스타그램 스토리 광고

결론적으로 퍼포먼스 마케팅은 성과를 측정할 수 있는 마케팅을 말하며, 외부에 있는 사용자를 내부의 서비스로 유입시킬 때 주로 사용됩니다.

커머스를 예시로 들면 유입~가입~첫구매 혹은 유입~재구매를 위한 UA Marketing과 Retargeting Markteting이 있습니다.

  • User Acquisition은 사용자 획득으로 외부에 존재하는 유저들을 서비스 내부로 데려오는 것이고,
  • Retargeting은 유입된적 있지만 다시 떠나있는 이들을 다시 한 번 타겟팅하여 서비스 내부로 또 데려오는 것입니다.
외부에 있는 사람들을 내부(서비스)로 데려오는 것
외부에 있는 사람들을 내부(서비스)로 데려오는 것!

퍼포먼스마케팅의 배너 광고와 검색 광고

퍼포마에서 활용하는 광고는 크게 1) 배너 광고와 2) 검색 광고로 나눌 수 있습니다.

1) 배너 광고는 불특정 다수에게 광고 콘텐츠를 노출시키는 것을 것입니다. 물론 대상의 타겟팅을 정교화할 수 있지만 (성별, 연령대 등의 인구통계학적 특징 외에 주요 관심사, 기타 행동) 최근에는 오픈 타겟이라고 하여 다른 조건 없이 광고의 모수로 삼는 경우가 많습니다. (광고 매체들의 머신 러닝이 정교화되어 알아서 타겟팅을 해주기 때문입니다.)

배너 광고 매체로는 페이스북/인스타그램(메타), 구글/유튜브, 네이버, 카카오 등이 있습니다. 페이스북 피드 광고, 인스타그램 스토리 광고, 구글/네이버/카카오의 배너 광고들이 그 예시입니다.

Image 1 Image 2
카카오와 네이버의 배너 광고
유튜브의 홈 화면의 배너 광고
유튜브의 배너 광고

퍼포먼스마케팅의 주요 지표

배너 광고는 목표에 따라 중요하게 여기는 지표 또한 달라지는데요. 목표에 따른 캠페인으로는 브랜드 인지도 향상, 유입(=트래픽) 증대를 위한 트래픽 캠페인과 가입/앱설치/매출 증대 등을 위한 전환 캠페인이 있습니다. 주요 지표로는 도달수, 노출수, 노출당비용, 클릭수, 클릭율, 클릭당비용, 전환수, 전환당비용, 전환율 등을 통해 성과를 측정할 수 있습니다.

  • 목표 (1)  브랜드 인지도 향상
  • 세부 목표: 최대한 많은 사람들에게 보여지게 하기
  • 주요 지표: 도달수, 노출수

  • 목표 (2) 웹사이트의 유입 증대
  • 세부 목표:  최대한 많은 사람들이 들어오게 하기
  • 주요 지표: 클릭수, 유입수 트래픽 캠페인

  • 목표 (3) 커머스 매출 증대
  • 세부 목표: 최대한 많은 주문 발생시키기
  • 주요 지표: 결제수

페이스북 광고 관리자 화면 (결과: 구매, 등록 완료, 조회 등)
페이스북 광고 관리자 화면 (결과: 구매, 등록 완료, 조회 등)

2) 검색 광고는 배너 광고보다는 고관여자에게 광고 콘텐츠가 노출됩니다. 보통 배너 광고를 통해 상품을 인지하고 이후에 그 상품군이 필요할 때 키워드를 검색하여 구매하기 때문이죠.

검색을 했을 때는 구매 직전일 가능성이 높습니다. 검색을 하는 것 자체가 이미 구매 의도가 있다는 것이니까요. 그러므로 검색 광고는 배너 광고보다 대상 모수는 적고 경쟁도가 치열하여 비용이 높지만, 상대적으로 구매로 이어지는 전환율이 높습니다.

  • 네이버 검색 광고: 파워링크, 쇼핑검색 등
  • 구글 검색 광고
Image 1 Image 2
퍼포먼스마케팅 구글 검색페이지

퍼포먼스마케팅에서 주의할 점!

제일 조심해야하는 점은 '숫자'입니다. 가장 중요한 만큼 가장 위험할 수 있는데요. 성과 측정에 초점을 맞추기 때문에 숫자에 현혹되기 쉽기 때문입니다. ROAS: Return On Ad Spend, 광고 수익률 - 가 주요 지표로 여겨지는 만큼 이 숫자'만을' 보게될 때를 주의해야합니다.

ROAS 200% vs ROAS 1000%

여기서 ROAS 1000%의 광고가 무조건 좋은 소재라고 판단할 수 없습니다. 기간과 비용 등 다른 수치들을 함께 봐야죠.

  • 최근 7일 간 100만원의 마케팅 비용을 집행하여 ROAS 1000%가 나왔다면 매출은 1,000만원일 것입니다.
  • 어제 1일 간 1,000만원의 비용을 써서 ROAS 200%가 나왔다면 매출은 2,000만원일 것입니다.

마케팅은 비용을 많이 쓸수록 난이도가 높아지므로 ROAS 수치만으로 판단할 수는 없습니다.

퍼포먼스마케팅도 그로스마케팅도 중요한 것은 데이터

퍼포먼스마케팅과 그로스마케팅의 가장 큰 공통점은 '숫자'로 대변되는 데이터를 근거로 한다는 것입니다. 메타 광고의 매출 증대를 목표 전환 캠페인에서는 광고 비용과 ROAS 등의 수치를 중요시할 것이고요.

그로스마케팅의 경우 리텐션(재방문율/재구매율)을 개선하고자 했을 때는 재방문수, 재구매수의 절대적인 수치와 전체 방문 중 재방문수의 비중, 전체 구매 중 재구매수의 비중 등 상대적인 수치를 봐야할 것입니다.

마케팅을 하는 경우는 크게 인하우스와 대행사(에이전시)로 나뉩니다. 인하우스에서 퍼포먼스마케터로 광고 매체를 직접 운영하거나 (self-serving이라고 많이들 표현합니다.) 대행사와 논의하며 일하는 경우가 있고요. 대행사에서 퍼포마를 한다면 여러 고객사들을 맡아서 다양한 광고매체를 경험할 수 있습니다.

보통 전자(인하우스)에서 퍼포먼스마케터로 일하는 경우 그로스마케터처럼 일하는 상황도 자주 발생합니다. 매출 성장에 필요한 모든 마케팅들을 도맡아서 하다보면 꼭 유상 광고 매체만 운영하는 것이 아닌, 인스타그램도 관리하고, 제휴 마케팅도 진행하고, 프로모션도 관리하고, 자사몰 상세페이지를 기획할 수도 있기 때문이죠.

Data-driven Marketing

데이터를 기반으로 한 의사결정과 마케팅을 하기 위해서 데이터 환경이 구축되어 있어야 합니다. 퍼포먼스마케팅에서 주로 다루는 광고 매체들의 성과의 명확한 분석을 위해서는 기여(Attribution)와 접점(Touchpoints)에 대한 결정과 설정이 필요하기 때문입니다.

이를 위해 MMP(Mobile Measurement Partner)인 에어브릿지(Airbridge)나 앱스팔라이어(Appsflyer), 애드저스트(Ajdust)를 활용하는 것이고요. CRM 마케팅과의 연계 캠페인을 운영하기 위해서 브레이즈(Braze)와의 연동을 구현하기도 합니다.

그리고 결국 궁극적인 전환 성과를 판단하기 위해서 DB Data (User Data)를 연동하여 비교하기도 하죠. 데이터 분석의 깊이에 따라 사용자에 대한 이해도가 달라지는 만큼 데이터 파이프라인 구축은 중요합니다.

데이터 파이프라인에서의 퍼포먼스마케팅 매체의 순서
데이터 파이프라인에서의 퍼포먼스마케팅 매체의 순서
데이터 파이프라인 구축 예시 이미지
데이터 파이프라인 구축

데이터파이프라인 구축을 지원하는

풀스택 마케팅 컨설팅펌 마티니아이오

https://martinee.io/

원본 포스팅 링크

퍼포먼스마케팅이란? 성과 측정이 가능한 것!

MARTECH_image_thumbnail
GROWTH

앰플리튜드(Amplitude), 왜 쓰는 걸까?

June 17, 2024

왜 유니콘 스타트업에서는 앰플리튜드를 쓰는 그로스마케터를 구할까?

앰플리튜드란?

웹/앱 서비스 내에서 사용자들의 행동을 분석할 수 있는 프로덕트 애널리틱스(Product Analytics), 서비스 분석 툴입니다.

앰플리튜드(Amplitude) 웹사이트 메인 페이지

마테크 솔루션 중에 프로덕트 애널리틱스, 그 중에 앰플리튜드

앰플리튜드는 프로덕트 애널리틱스(Product Analytics)입니다. 단어가 영어일 뿐, 직역하면 서비스 분석 솔루션/툴입니다. 온라인 비즈니스, 서비스, 프로덕트, 마케팅 서비스들을 도와주는 기능들을 솔루션(Solution)/툴(Tool)이라고 많이 지칭합니다. 특히, 마케팅 쪽에서는 마테크 솔루션(Mar-tech Solution), 마테크 툴(Mar-tech Tool)이라고도 하죠.

2022 마테크 솔루션 Landscape
마테크 툴은 엄청나게 많다....

주요 마테크 솔루션 소개 이미지
주요 툴들은 또 이렇게 나눌 수 있습니다.

구글 애널리틱스보다 '앱'에 좀 더 특화된 솔루션!

가장 유명한 마테크 솔루션으로는 구글 애널리틱스(Google Analytics)가 있습니다. 무료인 만큼 대중성이 높고 자사몰이 있는 웹 서비스를 하신다면 들어보셨을 것입니다. 이전에는 앱이 약하다는 단점이 있었지만, 최근 GA4는 앱까지 커버합니다.

구글애널리틱스(Google Analytics4) 보고서 화면
구글애널리틱스(Google Analytics4) 보고서 화면

GA4가 앱까지 커버한다 해도 아직 앱 분석의 디테일은 앰플리튜드가 강합니다. 즉 GA는 웹(Web)>앱(App), Amplitude는 앱(App)>웹(Web)의 순으로 장점이 있습니다.

또한 구글애널리틱스는 사용자를 서비스 웹/앱에 들어오게 하는 유입에 초점이 맞춰져있습니다. 사용자 획득이라고 하여, UA(User Acquisition)으로도 이야기하는데요. 모든 서비스의 첫 시작이라고 할 수 있습니다.

유튜브를 구독하기 위해서, 무신사에서 상품을 사기 위해서, 밀리의 서재에서 책을 읽기 위해서는 결국 유튜브, 무신사, 밀리의 서재에 유입되어야 하니까요. 즉 목표가 되는 전환을 위해서는 유입이 필수 요건입니다.

일례로 구글애널리틱스는 사용자의 유입을 만들어내는 채널(Organic, Paid, Refferal)의 데이터를 세부적으로 확인할 수 있습니다. (물론 앰플리튜드로도 확인할 수 있습니다.)

  • 오가닉 채널(Organic)은 자연적인 방식으로, 네이버나 구글에 키워드를 직접 검색해서 들어온 경우
  • 페이드 채널(Paid)는 퍼포먼스마케팅와 연계된 방식으로, 페이스북/인스타그램 광고나 네이버 검색 광고를 클릭해서 들어온 경우
  • 추천(Referral)은 링크를 타고 들어오는 경우 등

앰플리튜드 (Amplitude)와 구글애널리틱스(Google Analytics4) 비교표
앰플리튜드가 왜 필요한가요? 앱 분석을 위해 필요합니다.

앰플리튜드는 유입 이후 웹/앱 서비스 내에서의 사용자 여정(User Journey)을 행동(Event)을 기반으로 세부적으로 확인할 수 있습니다.

  • Q1. 사용자가 우리 서비스에 유입된 이후에 직후에 가장 많이 한 행동은 무엇일까?
  • A1. SALE을 눌러볼까, 상품을 검색해볼까, 가입을 할까, 혜택을 볼까?
  • Q2. A 브랜드에서 구매 완료 행동을 N개월에 걸쳐 X회 이상 한 유저들의 특성은 무엇일까?

앰플리튜드의 퍼널(Funnel) 차트
앰플리튜드의 퍼널(Funnel) 차트

UA 관점 (User Acquisition) 이후로 언급되는 것은 리텐션 (Retention)인데요. 첫 방문, 첫구매로 사용자의 행동이 끝난다면 서비스가 장기적으로 살아남기는 어렵겠죠? 이에 따라 두 번, 세 번 방문하고 또 전환되는 재방문과 재구매가 중요합니다.

앰플리튜드는 전환된 사용자들의 행동을 세부적으로 분석하여, 여러 번 방문/전환한 충성 사용자들을 코호트화 할 수 있습니다.

(*코호트: 동일 특성을 가진 사용자의 집단화) 충성 사용자들의 코호트를 분석하여 특성을 파악하고 다른 사용자들이 충성 사용자가 될 수 있도록 유도할 수 있습니다.

즉, 구글 애널리틱스가 UA에 강점이 있는 솔루션이라면 앰플리튜드는 리텐션에 강점이 있는 솔루션이라고도 이야기할 수 있겠습니다. (물론 GA도 Retention을 볼 수 있고, 앰플리튜드도 UA를 볼 수 있습니다.)

앰플리튜드(Amplitude), 개인에게는 왜 필요한가요?

스타트업 쪽에서 데이터 분석 역량을 요하는 직군에게는 우대 사항 혹은 자격 요건이 됩니다. 오늘 기준 원티드에서 찾아본 채용 공고인데요.

여기어때에서 Growth Marketer(그로스 마케터)를 채용하는 공고에 주요 업무로 데이터 분석과 그로스 전략 수립이, 자격 요건에 마케팅 툴 [MMP(Appsflyer, Adjust), Amplitude, Braze, GA 등]에 대한 내용이 기재된 것을 확인할 수 있습니다.

채널톡의 마케팅 매니저 채용 공고 내에도 우대사항으로 세일즈포스(아마 태블로겠죠?), 앰플리튜드 등 데이터 솔루션을 통한 성과 측정이 언급됩니다.

여기어때 컴퍼니 그로스 마케터 채용공고
채널톡 마케팅 매니저 채용공고

결국 더 좋은 앱을 만들어 (수익을 높이고자) 쓰는 솔루션입니다.

왜 앱 데이터를 분석해야 할까요? 더 좋은 앱을 만들기 위해서겠죠. 앱 데이터는 무엇으로 구성될까요? 사용자들의 정보와 행동에 의해서 앱 데이터가 쌓입니다.

즉 사용자의 행동을 분석할수록 더 나은 프로덕트/서비스를 만들 가능성이 높아집니다.

사용자들이 불편을 느끼는 지점이 사용자들이 이탈하는 지점일테고, 불편을 개선하면 이탈률이 낮아지고 잔존율이 높아지며, 잔존율이 높아지면 전환의 대상이 되는 모수가 많아지기 때문입니다. 즉 더 많은 전환을 유도할 수 있게되어 서비스가 목표하는 KPI - 매출이나 회원수 등 - 을 달성할 수 있게됩니다.

앰플리튜드(Amplitude), 회사에게는 왜 필요한가요?

앰플리튜드를 사용하면

여러 종류의 데이터를 한 번에 보여주는 대시보드의 형태를 쉽게 쓸 수 있게 됩니다.

대시보드는 여러 차트의 구성으로 이루어져있는데요.

예를 들어 UA 대시보드라고 하면, 첫방문수 추이(차트1), 가입수 추이(차트2), 첫구매수 추이(차트3), 첫방문을 광고 매체 별로 쪼갠 것(차트1-1) 등으로 구성될 수 있겠습니다.

대시보드 한 판에 여러 지표 보기

이외 데이터에 대한 접근성을 높여서 회사 구성원들의 데이터 기반 의사 결정 (data-driven) 의사결정을 돕습니다. 데이터를 sql, python으로만 추출하는 경우 이 데이터 스킬셋이 있는 사람들만 데이터를 추출할 수 있는데요. Amplitude는 한 번 도입해두면 차트를 그리는 것이 훨씬 쉬워, 원하는 것을 보기도 쉽습니다.

다양한 구성원 간의 데이터 드리븐 의사결정

마지막으로 데이터의 연동이 빠르다는 것 또한 장점입니다. 어제의 매출 데이터도, 오늘 오전의 유입 데이터도 바로 확인할 수 있습니다.

데이터의 빠른 업데이트

앰플리튜드 누가 쓰나요?

마케터와 서비스기획자(PM/PO), 데이터 분석가(Data Analyst), UIUX 디자이너 등 여러 직군에서 활용할 수 있습니다.

언제, 어디에 쓰나요?

전체 구성원들이 함께 확인할 수 있는 KPI 대시보드

마케터가 사용하는 마케팅 대시보드

서비스기획자(PM)이 사용하는 프로덕트 대시보드

디자이너가 사용하는 디자인 대시보드 등이 있습니다.

앰플리튜드의 마케팅 대시보드 샘플
앰플리튜드의 마케팅 대시보드 샘플
앰플리튜드의 이커머스 KPI 대시보드 샘플
앰플리튜드의 이커머스 KPI 대시보드 샘플
앰플리튜드의 콘텐츠 대시보드 샘플
앰플리튜드의 콘텐츠 대시보드 샘플
앰플리튜드의 프로덕트 대시보드 샘플
앰플리튜드의 프로덕트 대시보드 샘플

앰플리튜드 어떻게 쓰나요?

무료 버전이나 구독 모델을 사용해볼 수 있습니다.

앰플리튜드의 플랜 비교표

https://amplitude.com/pricing

앰플리튜드 정규 도입은 한국 공식 리셀러인 AB180/CJ맥소노미를 통해 진행할 수 있습니다. 이후 기획자들의 택소노미 설계와 개발자들의 구현을 통해 도입이 완료됩니다.

앰플리튜드의 존재가 당연해집니다.

앰플리튜드를 한 번 사용하면 없는 것을 상상하기 어렵습니다. 앰플리튜드의 효능을 체감하는 곳들은 많습니다. 29CM, 무신사, SSG, 올리브영 등 '앱'이 중요한 주요 커머스들은 많이들 사용합니다!

(참조) 29CM의 데이터 그로스팀의 데이터 분석가 분이 쓰신 글

목적 조직에서의 DA가 하는 일

앰플리튜드 본사? 리셀러? 컨설팅펌?

앰플리튜드의 한국 공식 판권은 AB180과 CJMaxonomy(CJ맥소노미)가 가지고 있습니다. 제가 재직 중인 마티니아이오(martinee.io)는 컨설팅펌입니다.

마티니의 그로스팀은 Amplitude를 도입할 때 택소노미 설계를 도와주고 데이터 파이프라인을 구축을 지원하며, 대시보드의 기획과 제작을 돕습니다. 즉 앰플리튜드가 '참고서'라고 했을 때 이를 판매하는 서점은 AB180과 CJ맥소노라면, 마티니는 과외 선생님입니다. 어떤 식으로 과외가 진행되는지, 시연을 원하시는 분들은 연락주세요!

원본 포스팅 링크

앰플리튜드(Amplitude), 왜 쓰는 걸까?

MARTECH_image_thumbnail
EVENT

브레이즈 개인화 마스터 클래스 Review (24.5.29)

May 29, 2024

마티니와 함께 Braze 개인화 기능 정복하기

브레이즈 개인화 마스터 클래스 메인 썸네일

행사명 : Braze Personalization Master Class 세미나

장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F

일시: 2024년 5월 29일 수요일 오후 7시

초청 대상:

  • Braze 도입 후 실무 활용법을 배우고 싶으신 분
  • Braze 개인화 기능을 전문적으로 활용하고 싶으신 분
  • 유저 개개인에게 최적화된 개인화 메시지를 발송하고 싶으신 분

어떻게 진행하였나요?

브레이즈 개인화 마스터 클래스 리셉션 및 음식 사진
브레이즈 개인화 마스터 클래스 수강생 모습

이번 세미나의 경우, 직접 Braze 개인화 기능을 활용하고 실무에 적용해보실 수 있도록 직접 실습을 진행하였으며 각 자리에 모니터를 배치하여 충분히 따라오실 수 있게 했습니다.

수강자분들이 배우신 내용을 복습하실 수 있도록 강의자료를 현장에서 공유해드렸고, 해석본까지 세션 종료 후에 추가 공유해드렸습니다.

어떤 것들을 배웠나요?

Braze 개인화 기능에 첫 걸음 내딛기

브레이즈 개인화 마스터 클래스 인덱스
브레이즈 개인화 마스터 클래스 강사 CRM 팀 리더 이건희

첫 번째 Step인 개인화 태그는 Braze에 유저별로 다르게 수집된 데이터를 메시지에 적용하여 개인화된 메시지를 보낼 수 있게 해주는 역할을 합니다.

개인화 태그 적용 가능 영역은 문구 입력부분과 이미지 영역, 랜딩 영역, 키값 영억(Key-Value Pair) 4가지로 구분되어 있으며, 데이터 타입 (Data Type)별로 Braze에서 가지는 특성이 다릅니다.

  • String/Number/Date/Boolean - 일반적인 데이터들이 하나의 값을 가짐.
  • Array - 복수의 값을 나열형 형태로 가짐.
  • Object - 한 가지 속성에 대한 상세 정보를 속성 하위의 속성으로 저장함.
  • Array of Object - 하위 속성을 가진 복수의 데이터를 나열형으로 수집함.

이처럼 데이터 타입에 따른 특성이 다르기 때문에 잘 숙지해야 합니다.

Braze 개인화 기능의 심화, Liquid에 익숙해지기

브레이즈 개인화 마스터 클래스 Level 2 리퀴드(Liquid)
브레이즈 개인화 마스터 클래스 Level 2 리퀴드(Liquid) 강의 모습

개인화 태그의 역할과 기능을 이해하고 나서 본격적인 개인화 기능을 학습하기 위해 Liquid 구문에 대해 배워보았으며 Braze에서 다양한 조건별 메시지 설정이 가능합니다.

원하는 Depth에 따라 제품 카테고리를 구분해서 발송하거나, 쿠폰 만료 하루 전 안내 메시지를 발송하거나, Braze 카탈로그를 활용한 추천 기능을 구현하는 등 설정한 메시지 내 변수를 지정하고 호출하는 과정에서 실제로 어떻게 출력되는지 이해하실 수 있도록 다양한 Liquid 활용 사례를 통해 설명해드렸습니다.

Braze Connected Content 익히기

브레이즈 개인화 마스터 클래스 Level 3 커넥티드 콘텐츠 (Connected Content)
브레이즈 개인화 마스터 클래스 Level 3 커넥티드 콘텐츠 (Connected Content) 실습 사진

마지막으로 Braze 커넥티드 콘텐츠 (Connected Contents)의 개념과 활용방법, 사례에 대해 배워보았습니다.

커넥티드 콘텐츠는 API를 호출(request)하고 그에 대한 응답값(response)을 받아와 메시지에 활용할 수 있는 Braze의 강력한 개인화 기능입니다.

데이터 베이스로부터 요청한 Data값을 받아온 API를 호출하는 방식이기에 커넥티드 콘텐츠의 기본 문법을 정확하고 올바르게 숙지해서 입력해주어야 합니다.

커넥티드 콘텐츠 기능 사용에 적절한 상황들도 Liquid 세션과 마찬가지로 다양한 사례들과 함께 살펴보았습니다.

CRM 커뮤니티에서 CRM 스킬 UP하기

브레이즈 개인화 마스터 클래스 브레이즈 배민지 연사

Braze와 Martinee가 야심차게 준비한 CRM 커뮤니티는 Braze 뿐만 아니라 다양한 CRM 툴에 관련된 내용이나 CRM 마케팅을 하면서 생기는 궁금증과 인사이트를 원활하게 공유하고 소통하기 위한 공간을 마련하고자 소개드렸습니다.

소통 및 공유에 있어 불편함이 없도록 참여자 ‘익명’으로 운영될 예정입니다.

CRM 커뮤티니 신청 링크는 세션에 참여해주신 분들께 공유드렸고 추가로 참석하지 못하신 분들께서는 아래 링크를 통해 신청하실 수 있습니다 😊

👉지금 바로 신청하기!

브레이즈 개인화 마스터 클래스 추후 커리큘럼

마티니가 Braze를 활용하는 방법을 아낌없이 공유해드리는 세션에서 CRM 스킬을 업그레이드 하고 싶으시다면 7월에 진행 예정인 Braze Personalization Master Class Advanced 세미나에 신청하세요!

(자리가 한정되어 있습니다!)

마티니가 여러분의 비즈니스 성공을 위해 언제나 함께 합니다.

MARTECH_image_thumbnail
EVENT

브레이즈 개인화 마스터 클래스 모집!

May 16, 2024

브레이즈 개인화 마스터 클래스 메인 배너
브레이즈 개인화 마스터 클래스 교육 소개 이미지

[MartineeXBraze] Braze Personalization Master Class는 Braze 도입을 고민하고 계시거나 도입 후 잘 활용하고 싶으신 고객사를 대상으로 Braze 개인화 기능인 Personalization 활용 노하우를 공유하는 교육 세미나입니다.

브레이즈 개인화 기능, 여러분도 잘 활용할 수 있습니다.

“Braze 도입은 했는데.. 어디서부터 어떻게 해야 하지?”
“Braze 개인화, 더 깊고 세부적으로 사용하려면 개발이 필요하지는 않을까?”

Braze 개인화 기능, 여러분도 개발없이 전문가처럼 매우 세부적으로 활용할 수 있습니다.

이번 세션에서는 참여자들이 충분히 실무에 활용할 수 있도록 실습에 포커싱하여 구성하였으며, 성공적인 CRM 캠페인을 위한 브레이즈 개인화 기능 활용 비법을 공유해드립니다.

마티니와 함께한 고객사

마티니와 함께한 고객사들

마티니는 버거킹, 오늘의집, 무신사, KFC, 쏘카, 알라미(딜라이트룸), 발란, 칼하트, LG전자, 넷마블, 크래프톤, 머스트잇, 동원F&B, 이랜드폴더, 네오위즈, IBK기업은행, 밀리의서재 이외에도 다양한 고객사와 여정을 함께하고 있습니다.

실무에 바로 적용할 수 있는 활용 노하우, 마티니와 함께한 고객사들이 만족하는 이유입니다.

참여했던 고객사들의 생생한 후기

브레이즈 부트캠프에 참여한 고객사 후기 모음

지난 브레이즈 부트캠프에 참여해주신 분들의 생생한 후기를 확인해보세요.

“ 실제 사용 사례에 대해 많이 들을 수 있어서 좋았고 브레이즈 시현 과정을 볼 수 있어서 좋았습니다. “
“ 라이브 데모를 통해 어떻게 활용하는지 상세하게 알 수 있었습니다. “
“CRM 고도화에 Braze가 어떻게 기여할 수 있을지에 대한 궁금증을 해소할 수 있었습니다. “
“Braze 개인화를 위한 Liquid의 개념과 구조 설명이 있어서 이해하기 좋았습니다. “

이런 분이 오시면 좋아요

브레이즈 개인화 마스터 클래스 타겟
  • Braze 도입 후 실무 활용법을 배우고 싶으신 분
  • 개발없이 Braze 개인화 기능을 전문적으로 활용하고 싶으신 분
  • Event Taxonomy를 효율적으로 설계하여 비용을 줄이고 싶으신 분
  • 유저 개개인에게 최적화된 개인화 메시지를 발송하고 싶으신 분

브레이즈를 잘 활용하면?

이런 것들이 가능해요

브레이즈를 잘 활용하면 가능한 이점
  • 고객 특성에 따른 개인화 메시지를 구성하고 최적의 시점에 발송할 수 있습니다.
  • 웹과 앱에서의 고객 여정 경우의 수를 확인하고 그에 따른 맞춤 캠페인 기획이 가능합니다.
  • 유저의 이탈 시점과 경로를 확인하여 재방문 시킬 수 있는 캠페인 기획이 가능합니다.
  • 다양한 API를 활용하여 트리거 기반으로 알림 및 메시지 자동화를 구축할 수 있습니다.

세션 커리큘럼

브레이즈 개인화 마스터 클래스 세션 커리큘럼

Braze Personalization Use Cases | 배민지 연사, Braze Head of Account Management

  • 브레이즈 개인화 기능을 활용한 후 비포/애프터를 살펴봅니다.
  • 브레이즈 개인화 기능을 활용한 Creative한 해외 Usecase들을 살펴봅니다.

Braze Personalization Master Class | 이건희 연사, Martinee CRM Team Lead

  • Personalization Master Intermediate
    • 개인화태그부터 Liquid, Connected Content까지 기본 문법을 배웁니다.
    • 배운 문법을 바탕으로 과제를 수행하고, 캠페인에 응용하는 다양한 케이스를 살펴봅니다.

추후 진행예정

브레이즈 개인화 마스터 클래스 추후 커리큘럼

7월

Braze Personalization Master Class | 이건희 연사, Martinee CRM Team Lead

  • Personalization Master Advanced
    • Liquid, Connected Content를 활용한 심화된 캠페인 사례를 배웁니다.
    • 개인화가 적용된 다양한 캠페인 사례를 확인합니다.

9월

Braze Automation Master Class | 이건희 연사, Martinee CRM Team Lead

  • Automation Planning Deep Dive
    • 캠페인/캔버스 기획에서 중요한 포인트들을 점검합니다.
    • 목적별로 다양한 캠페인 기획 사례를 살펴봅니다.

11월

Braze Data Analytics Master Class | 이건희 연사, Martinee CRM Team Lead

  • Data Analytics / Utilization
    • CRM 캠페인의 다양한 분석 방법을 확인합니다.
    • Braze의 데이터 활용을 극대화하는 방법들을 살펴봅니다.

브레이즈 개인화 마스터 클래스 개요

When

2024년 5월 29일 수요일 오후 7시 - 9시‍

Where

서초구 서초대로 38길 12 마제스타시티 타워2, 12층 마티니 오피스

  • 서초역 4번 출구 도보 5분 소요

네이버 지도로 확인하기

브레이즈 개인화 마스터 클래스 참여 혜택 및 안내사항

참여자 혜택

📢 혜택 1. Martinee CRM 커뮤니티 초대

📢 혜택 2. 마티니 CRM POC 추첨 무료 1회 제공

📢 혜택 3. Braze Bootcamp Advanced 초청권 제공

안내사항

  • 참가 인원이 한정되어 있어 별도 참석 확정 연락을 드릴 예정입니다.
  • 실습이 포함된 교육으로 개인 노트북 지참이 필요합니다.
  • 주차권 제공 가능하며 리셉션 데스크로 문의 부탁드립니다.
  • 신청시 기입한 이메일이 회사 이메일이 아닐 경우 선정이 불가할 수 있습니다.
  • 참석자분들에게 간단한 음식이 제공될 예정입니다.
  • CRM POC의 경우 추첨을 통해 선정되신 분께 별도로 안내드릴 예정입니다.

Contact

mkt@martinee.io

이번 세미나에 꼭 참석하셔서 CRM 캠페인의 성과와 비즈니스 개선을 마티니와 함께 이뤄보세요!

MARTECH_image_thumbnail
EVENT

그로스 캠프 1기 Amplitude by Martinee (24.3.27)

April 30, 2024

마티니와 함께 Amplitude 정복하기

그로스 캠프 1기 Amplitude by Martinee 메인 배너

행사명 : [그로스 캠프] Ep.1 - Amplitude by Martinee

장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F

일시: 2024년 4월 3일 ~ 4월 24일 매주 수요일 오후 7시부터 9시

초청 대상: Amplitude 기초 개념부터 실무 활용을 위한 주요 기능들을 배우고 싶은 마케팅에 관심이 있으신 분

웨비나로 워밍업!

그로스 캠프 1기 Amplitude by Martinee 웨비나 목차
그로스 캠프 1기 Amplitude by Martinee 웨비나 화면

본격적으로 오프라인 세션을 시작하기전 전반적인 과정에서의 핵심 내용들과 흐름을 설명하는 시간을 가졌습니다.

웨비나에서는 마티니의 워크플로우와 마티니가 바라보는 그로스 마케팅의 개념을 설명해드렸습니다. 이어서 데이터 (Data) & 프로덕트 (Product) 분석(Analysis)과 마티니의 제품 분석을 통한 개선 사례와 방법을 Amplitude 사례를 기반으로 소개해드렸습니다.

어떻게 진행하였나요?

그로스 캠프 1기 Amplitude by Martinee 리셉션 사진
그로스 캠프 1기 Amplitude by Martinee 현장 준비 사진
그로스 캠프 1기 Amplitude by Martinee 세션 현장 모습
그로스 캠프 1기 Amplitude by Martinee 수강생 모습

오프라인 강의 세션은 LV. 1 세션부터 LV. Expert 세션까지 네 단계 레벨로 나누어 진행되었습니다. 자신에게 필요한 강의만 수강하거나 각 난이도에 알맞는 강의를 선택해서 자유롭게 수강할 수 있었습니다.

오신 분들은 제공해드린 명찰을 가지고 원하는 자리에서 강의를 들을 수 있었고 저녁 시간 때인 만큼 간단한 샌드위치와 음료를 제공해드려 강의에 집중하며 수강하실 수 있게 했습니다.

실습 세션의 경우, 직접 앰플리튜드의 기능을 활용하고 실무에 적용해보실 수 있도록 데모 계정을 통해 실습을 진행하였으며 각 자리에 모니터를 배치하여 충분히 따라오실 수 있게 했습니다.

중간 중간 들었던 이론과 내용을 직접 적용해볼 수 있는 시간도 충분히 가지며 앰플리튜드의 기능을 완전히 이해하는 시간을 가졌습니다.

각 세션 이후에는 수강자분들이 배우신 내용을 잊지 않도록 과제 제도를 통해 복습하실 수 있게 하였으며 성적이 우수하신 분들께는 매주 다섯 분씩 스타벅스 쿠폰을 제공해드렸습니다.과제 덕분에 복습이 잘 되어 좋았다는 후기들을 많이 보내주셨습니다.

과제를 잘 해주신 분과 후기 포스팅을 남겨주신 수강생분들께는 그로스 캠프의 핵심이라고 할 수 있는 마티니만의 108장 분량 앰플리튜드 가이드북까지 제공해드려서 이후에도 스스로 앰플리튜드 솔루션에 대해 학습할 수 있도록 구성했습니다.

어떤 것들을 배웠나요?

앰플리튜드에 첫 걸음 내딛기

그로스 캠프 1기 Amplitude by Martinee LV .1 강사 이재철
그로스 캠프 1기 Amplitude by Martinee LV .1 수강모습

첫 번째 LV. 1 탐색적 데이터 분석(EDA)과 가설 발견을 위한 분석 기초 세션에서는 앰플리튜드를 다루기 전에 알아야 할 한 가지와 앰플리튜드의 활용 목적, 구조, 데이터 택소노미 (Data Taxonomy) 설계에 대해 알아보았고 앰플리튜드의 필수 차트인 세그멘테이션 (Segmentation)과 퍼널 (Funnel), 리텐션 (Retention) 차트를 활용하여 분석 기초를 진행해보았습니다.

앰플리튜드와 친해지기

그로스 캠프 1기 Amplitude by Martinee LV .2 수강생과 강사 이재철님 모습
그로스 캠프 1기 Amplitude by Martinee LV .2 세션 모습

두 번째 LV. 2 Cohort / LTV / Lifecycle 분석을 활용한 제품 분석 & 유저 분석 심화 세션에서는  DAU & MAU와 LifeCycle, Revenue와 LTV, Sign up과 Engagement를 살펴보고 코호트 (Cohort) 분석 정의와 활용에 대해 알아보았습니다.

앰플리튜드로 비즈니스 성장시키기

그로스 캠프 1기 Amplitude by Martinee LV .3 강사 이재철
그로스 캠프 1기 Amplitude by Martinee LV .3 수강생 모습

세 번째 LV. 3 비즈니스 성장을 위한 유저 여정 분석(AARRR)과 그로스 모델링 세션에서는 앰플리튜드에서 대시보드를 만드는 방법과 AARRR의 각 단계인 획득 (Acquisition) , 활성화 (Activation), 구매 (Revenue), 재방문 (Retention), 추천 (Referral)의 유저 여정 분석과 그로스 모델링에 대해 배우는 시간을 가졌습니다.

앰플리튜드로 마케팅 정복하기

그로스 캠프 1기 Amplitude by Martinee LV .Expert 세션 시작 모습
그로스 캠프 1기 Amplitude by Martinee LV .Expert 강사 이재철

마지막 LV. Expert Performance & CRM & Growth 분석에 대한 실행을 위한 마케팅 분석 & 자동화 Case Study 세션에서는 통합 마케팅 환경을 구축하는 방법에 대해 알아보았으며 브레이즈와 앰플리튜드, 에어브릿지 연동과 각 역할 및 기능에 대해 설명했습니다.

앰플리튜드 활용법과 비즈니스 성공 노하우를 배우고 싶으시다면 5월에 진행 예정인 마티니 그로스 캠프 2기에 신청하세요!

마티니가 여러분의 비즈니스 성공을 위해 언제나 함께 합니다.

MARTECH_image_thumbnail
CRM

CRM 마케팅을 준비할 때 놓치기 쉬운 3가지

February 16, 2024

마케팅의 새로운 패러다임

근 몇 년간 사람들에게 가장 많은 관심을 받은 마케팅 패러다임은 CRM 마케팅이 아닐까 싶다.

기존의 주 마케팅 패러다임인 퍼포먼스 마케팅이 여러 환경 변화로 인해 큰 제한이 생겨났기 때문이다.

이제는 마케터라면 지겨울 정도로 들어본 ATT, SKAN, 3rd party 쿠키 수집 제한 등이 이에 해당한다.

이 환경 변화의 공통된 특징은 ‘데이터 수집에 제한’이 발생한다는 것이다.

이미 수년간 Data-driven 마케팅을 통해 데이터 리터러시가 상승했고 많은 이들이 데이터의 중요성도 알고 있는 시점이기에, 데이터 수집이 제한된다는 것은 많은 비즈니스가 더 큰 데이터 갈증을 갖도록 했다.

(데이터의 '맛'을 보여주고 끊어버렸다.)


이러한 상황 속에서 1st party data를 활용하는 CRM 마케팅의 관심도가 높아지는 것은 자연스러운 현상이다.

하지만 여러 회사에 컨설팅을 다니면서 이런 대세감에 휘말려 CRM 마케팅을 “안 하면 뒤처질 것 같아서”하는 경우를 많이 봤다. 비싼 CRM 자동화 솔루션을 사놓고 쓰진 못하고 있는 상황도 여럿 목격했다.

우리는 CRM 마케팅을 올바르게 하고 있는지, 혹은 다들 중요하다고 하니 등 떠밀려하진 않았는지 명확한 셀프 리뷰가 필요하다.

본인들의 CRM 마케팅 점검이 필요한 CRM 마케터, 비즈니스 오너가 CRM 마케팅을 실행할 때 놓치기 쉬운 3가지 사항을 짚어보자.

1. 비싼 자동화 솔루션 꼭 써야할까?

CRM Solutions
시장엔 다양한 특장점을 지닌 CRM 솔루션들이 있다. 매우 많이.

많은 회사가 금전적 부담으로 인해 솔루션을 사용할 수 없다고 한다.

하지만 과연 솔루션을 사용하지 않는 게 돈을 아끼는 일일까?

자동화 솔루션이 없을 경우, CRM 마케터는 메시징 채널별로 내부 개발자에게 요청하거나 이 발송만을 위해 별도로 개발한 내부 백오피스를 활용할 것이다.

타겟팅은 데이터 분석가에게 요청하거나, 서투르게나마 마케터가 직접 Query문을 활용하여 추출해서 발송하게 된다.

여기서 한 번의 메시지 발송에 1~2명의 CRM 마케터, 상황에 따라 1명의 개발자, 1명의 데이터 분석가가 메시지 발송 및 분석 업무에 투입된다고 가정했을 때,

각자의 연봉과 투입 시간에 따라 최소 연간 3,000만 원에서 최대 1억 이상까지 ‘메시지 발송 업무’에만 투자하고 있는 것이다.

반면, 자동화 솔루션이 있을 경우 오직 CRM 마케터만 투입해도 되며, 1명의 CRM 마케터가 만들어낼 가치는 무궁무진하다.

메시지가 ‘자동화’ 되어 있기 때문에 설령 CRM 마케터가 퇴사해도 그 사람이 만들어낸 캠페인은 계속해서 돈을 벌어오고 있을 것이기 때문이다. 조직 내 CRM 마케터가 사라져도 과거 마케터가 만들어낸 CRM 캠페인은 계속해서 돈을 벌어온다.

자동화 솔루션을 통해 개인화 메시지 발송, 캠페인 개선을 통해 KPI가 상승할 것까지 고려하면 자동화 솔루션 사용이 과연 금액 부담을 주는 것인지 금액 부담을 덜어 주는 것인지 고려해 볼 필요가 있다.

2. 자동화/개인화의 부재

CRM 자동화 솔루션의 핵심 기능인 개인화
CRM 자동화 솔루션의 핵심 기능인 개인화

CRM 자동화 솔루션을 도입하고도 ‘진짜 자동화’를 구현하지 않고 있는 회사도 많이 있다.

여기서 말하는 ‘진짜 자동화’는 한 번 런치를 해 놓으면, 두 번 다시 건드리지 않아도 의도대로 계속해서 발송되는 캠페인들을 말한다.

우리는 이처럼 완전히 자동화된 캠페인을 ‘Always On’ 캠페인이라 칭한다.

반대로 한 번, 혹은 일시적인 기간만 발송하고 다음에 발송하려면 다시 캠페인을 기획하고 셋팅, 런칭해야 하는 캠페인을 ‘AdHoc’이라 부른다.

많은 회사를 컨설팅하며 Always On이 AdHoc보다 많은 케이스는 10% 남짓이다.

이런 케이스는 단순히 기존 발송 프로세스상에서 개발자에게 발송을 요청하는 과정만 생략된, CRM 자동화 솔루션을 절반도 활용하지 못하는 경우다.

또 다른 문제는 개인화의 부재다. 내부에서 개인화된 메시지와 개인화되지 않은 메시지의 성과를 비교하는 A/B Test를 몇 차례 진행했는데, 평균 30%가량 목표 전환율이 상승했다. 테스트에 따라 2배 이상 상승하는 케이스도 있었다.

단순히 유저의 이름을 호명하는 것부터 유저가 마지막으로 보고 구매하지 않은 제품의 이미지를 보여주는 것, 유저가 구매한 제품을 바탕으로 크로스세일을 위한 연관 제품을 추천하는 것까지.

개인화를 사용하지 않는 것은 CRM 마케터의 강력한 무기 하나를 포기하는 것과 같다.

3. 잘못된 CRM 성과 판단

“CRM 마케팅 성과를 어떻게 판단해야 하나요?”

CRM 마케팅을 컨설팅하며 빈번하게 받던 질문 중 하나였다.

우리가 지금 CRM의 성과를 판단하고 있는 방법이 옳은지 한 번쯤 검토해 볼 필요가 있다.

가장 권장하고 싶은 방법은 가능한 메시지를 수신하지 않는 Control Group을 동시 운영하여, 메시지를 수신한 Treatment Group과의 전환율 비교를 통한 증분(Incremental) 전환으로 확인하는 것이다.

CRM 메시지를 수신하는 유저는 대부분 이미 회원인 유저가 많다. 서비스에 어느 정도 수준의 매력을 느끼고, 일정 수준의 구매 의도를 지닌 사람들일 가능성이 크다.

그러므로 우리가 아무런 마케팅 활동을 하지 않아도 원하는 전환은 발생한다.

여기서 Control Group이 발생시킨 전환은 ‘아무것도 안 해도 발생했을 전환’으로 설정하고,

Treatment Group이 발생시킨 전환은 ‘아무것도 안 해도 발생했을 전환’ + ‘마케팅을 통해 추가로 확보한 전환’으로 설정한다.

여기서 ‘마케팅을 통해 추가로 확보한 전환’이 ‘증분 전환’에 해당한다.

기초적인 형태의 증분(Incremental) 계산 사례

Control Group의 전환 수가 100건, Treatment Group의 전환 수가 300건이라면, 두 전환 수의 차인 200건이 증분 전환 수가 된다.

이를 기존에 ‘아무것도 안 해도 발생했을 전환’으로 나누어 주면 ‘증분율’ 200%가 된다.

증분율에 예상 수신 모수까지 고려하면 앞으로 추가 확보할 전환 수도 시뮬레이션이 가능해질 것이다.

여기에 매출과 메시지 발송 비용, 쿠폰 비용 등을 함께 고려하면 더 비즈니스와 관련 있는 CRM 캠페인 성과 판단이 가능해진다.

유저들이 다소 노이지 하게 느낄 수 있는 CRM 마케팅의 특성상, 증분을 통해 ‘ROI 나오는 곳에 투자하는’ 성과 판단 및 의사결정이 필요하다.

앞으로의 CRM 마케팅

앞으로로의 CRM 마케팅
CRM 마케팅은 광고 메시지 발송 그 이상의 가치를 지닌다.

CRM 마케팅은 비즈니스 Growth를 위한 강력한 도구다.

CRM 마케팅은 단순한 메시지 발송부터 프로덕트 기능적 결함을 CRM으로 보완하거나, 비즈니스 성장을 위한 다양한 테스트를 빠르게 진행하거나, 부족한 매출을 끌어올리는 역할도 수행하기 때문이다.

그러나 이런 CRM 마케팅의 무궁무진한 가능성에 비해, 많은 회사의 CRM 마케터의 역할은 각종 부서의 메시지 발송 대행, 멤버십 관리 등 굉장히 한정적인 경우가 많다.

심한 경우 CRM 마케터가 타 부서에서 발송 요청한 AdHoc CRM 메시지만 발송하면 일과가 끝나는 경우도 봤다.

CRM 마케터의 역할을 단순히 자사 채널을 통해 메시지를 발송하는 '메시지 발사대'로 한정 지을지, 프로덕트 및 비즈니스의 Growth '주포’로써 활용할지에 따라 CRM 마케팅이 조직에 미치는 영향력의 차이는 커질 것이다.