February 3, 2025
지난 수 년간 CRM 마케팅이 디지털 마케팅의 주요 패러다임으로 자리 잡으면서, 해외의 CRM 자동화 솔루션들이 한국 시장에 진출했다. 또, 국내의 여러 CRM 자동화 솔루션들이 등장하여 적극적인 마케팅 활동을 펼치고 있다.
CRM 자동화 솔루션은 마테크 시장에서 점점 포화 상태에 이르고 있으며, 그만큼 솔루션을 구매해야 하는 마케터나 의사결정권자들의 결정도 어려워지고 있다.
이번 글에서는 CRM 솔루션들을 비교해보고, 우리 회사에 가장 적합한 CRM 솔루션을 찾기 위한 고려사항들을 이야기하려 한다.
[참고]
이 글은 아래의 CRM 자동화 솔루션들을 대상으로 합니다.
- 브레이즈 (Braze)
- 원시그널 (OneSignal)
- 인사이더 (Insider)
- 아이쿠아 (AIQUA)
첫 번째 고려사항은 내가 일하고 있는 자사 서비스의 특성이다.
비슷해보이는 CRM 툴들 사이에서도 다른 특성들이 있으며, 각 특성들이 우리 서비스의 특성과 얼마나 어울리는지 살펴봐야 한다.
판매하는 프로덕트의 관여도, 타겟 유저의 특성, 상품의 수량, 수익 모델, 매출을 내는 유저의 비중, 재구매율을 비롯한 주요 지표들이 서비스 특성에 포함될 수 있다.
고관여 제품은 유저 설득에 시간이 오래 걸리고, 설득을 위해 보내야 하는 메시지도 많다.
반면 저관여 제품을 유저 설득에 시간이 상대적으로 적게 소요되지만, 그 짧은 시간안에 설득해내야 한다는 다른 유형의 챌린지가 있다.
• 정보성 메시지
가격이 비싼 만큼 유저들은 자신의 결정이 가질 리스크를 낮추려 한다. 정보성 메시지를 통해 이런 리스크를 낮추는 것 만으로도 구매전환율을 높일 수 있다.
• 높은 수준의 개인화
높은 수준의 개인화를 통해 본인이 고려하고 있는 제품을 반복적으로 노출시켜야 한다. 소셜프루프, 가격 변동 정보 등을 활용하여 유저로 하여금 "구매하는 것이 올바른 선택인 것 같은 느낌"을 주어야 한다.
• 긴 고객 여정에 적합한 단계별 메시지
구매에 오랜 시간이 걸리는 만큼, CRM으로 터치할 시간도 많이 주어진다. 다양한 채널과 메시지를 활용하여 유저에게 단계별 메시지를 발송하여 전환율을 높일 수 있다.
• 꾸준한 쿠폰 플레이, 할인 등 프로모션
값이 저렴한 저관여 제품일수록 유저들이 오히려 가격에 더 민감하게 반응한다. 가전은 비싸도 좋은 걸 사서 오래쓰고자 하지만, 물이나 휴지는 그렇지 않다. 가격 경쟁력을 갖추기 위한 쿠폰 플레이와 할인을 꾸준히 진행해야 한다.
•프로모션 참여 유도: 게이미피케이션
"꾸준한 프로모션"을 진행하다보니, 프로모션을 진행해도 유저들의 참여율이 낮아질 때가 있다. 이 경우 게이미피케이션이나 프로모션의 한정성을 강조하여 프로모션의 참여율을 높여야 한다.
• 크로스세일
저관여 제품은 상대적으로 크로스세일이 용이하다. 마트 계산대에 껌이나 캔디 같은 제품이 놓여 있는 이유이기도 하다. 짧은 구매여정 속에서도 크로스세일을 유도하여 구매당 단가를 높일 수 있다.
상품이 많을 수록, 고객의 수가 많을 수록 할 수 있는 CRM 시나리오의 종류도 다양해지는 편이다.
상품이 많다면 여러 상품별 구매 데이터를 활용한 AI 상품추천(Recommendation), 크로스세일이 더욱 힘을 받는다. 상품이 많으니 카테고리, 브랜드 등의 부가적인 데이터도 활용하기 용이하며, 데이터가 많으니 기능의 성능도 올라간다.
고객이 많다면 유저 세그멘테이션(User Segmentation)이나 유저 클러스터링(User Clustering)을 적극적으로 활용할 수 있다. 유저가 많은만큼 유저 집단별 특성을 명확하게 확인할 수 있다.
반대의 경우엔 위와 같은 부가 기능들의 중요도가 상대적으로 떨어진다.
상품 추천 로직을 만들었는데, 추천하는 상품이 다 똑같은 상품들일 수 있고, 유저 세그멘테이션을 진행했는데 세그먼트 당 유저 모수가 몇 명 되지 않을 수도 있다.
상품의 수, 고객의 수가 많지 않다면 위와 같은 마케팅 전략들의 영향력이 줄어든다. 그리고 쿠폰, 혜택 등의 프로모션이 CRM 성과에 기여하는 비중이 커진다.
CRM 자동화 솔루션들이 프로모션을 짜주지는 않으니, 상대적으로 가벼운 솔루션을 찾는 것이 가성비를 높이는 것도 방법일 수 있다.
BM에 따라서도 취할 수 있는 전략이 달라진다.
여러 브랜드의 제품을 파는 이커머스 플랫폼의 경우, 플랫폼보다 내가 판매하는 '브랜드'의 충성도에 의해 서비스를 이용할 가능성이 크다.
극단적인 예시가 플랫폼과 나이키의 관계다. 대부분의 플랫폼에서 나이키 제품은 판매량 최상위권을 차지한다. 유저는 나이키를 살 건데, 여러 쇼핑몰을 찾아다니며 나이키를 제일 싸게 파는 곳을 찾을 뿐인 것이다.
(그래서 이런 브랜드들은 분석에서 제외하고 보기도 한다.)
이런 브랜드의 충성도를 활용하여, 메시지에 유저가 관심을 보인 브랜드를 개인화한다면 전환율을 높일 수 있다.
F&B의 경우 재구매가 용이하다. 가격이 저렴하기도하고, 업종 자체가 '먹는 것'이기 때문이다. 그러나 유저에겐 선택지가 너무 많다. 보편적인 재구매주기를 찾고, 재구매주기를 단축시키기 위한 메시지가 유효할 수 있다. 또, 주문 프로세스에서의 크로스세일 유도를 통해 판매액을 높일 수도 있다.
교육, 여행처럼 오랜 기간 지속되는 서비스를 제공하는 경우, 구매 이후의 유저 경험이 더욱 중요하다.
사실 이런 서비스는 고객이 니즈가 없으면 판매를 유도하기 어렵다. 유저는 영어를 배울 각오를 하고, 휴가를 내고 해외 여행을 갈 계획을 세워야지만 구매한다.
그래서 구매이후 이용/경험을 돕는 지속적인 메시지를 통해 유저에게 긍정적 구매 경험을 심어주어야 한다. 긍정적 경험을 통해 재구매 전환율을 높이는 것이다.
내가 처한 환경을 고려했으니, 이젠 각 솔루션별 특징을 확인해볼 차례다.
CRM 자동화 솔루션들은 CRM 메시지 자동화뿐만 아니라 성과를 높일 수 있는 다양한 기능들을 제공하고 있으며, 이런 기능들이 각 솔루션들에게 차이점을 준다.
브레이즈 (Braze)
Braze의 경우 강력한 개인화 기능을 가지고 있다. Liquid, Connected Content와 같은 높은 수준의 개인화를 사용할 수 있는 기능들이 있다. 그 밖에도 Canvas내 다양한 종류의 스텝들을 통해 유저와의 관계를 구축할 수 있으며, 범용적인 마테크 연동성, 다양한 AI 기능들도 장점으로 꼽을 수 있다.
기능들이 다양하고 파워풀한만큼, 실행할 수 있는 시나리오가 가장 많은 솔루션이 아닐까 싶다.
원시그널 (OneSignal)
OneSignal의 강점은 '가성비'라고 볼 수 있다. 기본 SDK설치에 10분이 채 걸리지 않는 가벼운 설치에 가격도 상대적으로 저렴한 편이며, 초심자가 사용하기에 난이도도 상대적으로 쉬운 편이다.
설치와 비용, 활용이 가볍다고 해서 기능이 부족한 것은 아니다. 개인화를 위한 Liquid를 제공하며, Braze의 Connected Content 기능과 유사한 Custom Data 기능도 있다.
CRM 마케팅이 익숙치 않거나, 서비스 특성상 진행할 수 있는 CRM 시나리오가 명확한 경우 적합하다.
인사이더 (Insider)
Insider는 웹 환경에서의 '높은 자유도'와 '상품추천'이 강점이다. 앱 내 웹뷰 영역도 포함이다.
웹 환경에서 다양한 배너, 소셜프루프, 게이미피케이션, 인브라우저 메시지 등을 사용할 수 있다. 템플릿도 굉장히 다양해서 노코드로 여러 CRM 시나리오를 구현할 수 있다.
자사 서비스에 웹 영역의 중요도가 높고, 커스터마이징의 자유도를 원한다면 좋은 선택지가 될 수 있다.
아이쿠아 (AIQUA)
AIQUA는 AI에 강점이 있다. AI를 개발한 애피어(Appier)는 자신들을 'AI 회사'라고 칭할 정도로 AI에 많은 투자를 하고 자신이 있다. AI를 활용한 카피라이팅, 상품추천, 이탈/구매 예측, 타겟팅뿐만 아니라, CRM 시나리오 제작까지 가능하다.
CRM 솔루션의 기본적인 기능들과 더불어, AI를 활용해 CRM 마케팅 효율을 강화하고 싶은 경우 적합하다.
그 밖에도 아래의 사항들을 함께 참고해보면 좋다.
• 타 솔루션과의 연동성
Product Analytics, MMP 등 다양한 마테크 솔루션과의 CRM 솔루션을 연계 활용하고자 한다면, 내가 사용하는 마테크 솔루션들과의 연동이 지원되는지 살펴보면 좋다.
• 고객지원 / 기술지원
처음부터 마테크 솔루션들의 기능을 100% 활용하기는 매우 어려운 일이다.
내가 원하는 수준의 고객지원 / 기술지원을 받을 수 있는지 체크해보아야 한다.
* 보통 마테크는 고객지원과 기술지원이 따로 구성되어 있다.
• 컨설팅, 대행 등의 도움을 받을 수 있는지
CRM 시나리오를 구현하고, 마케팅 목표를 달성하기엔 마테크 솔루션들의 지원 만으로는 부족할 수 있다. 솔루션 사용을 돕지만, 비즈니스 성장을 위한 마케팅을 지원하진 못하기 때문이다.
어떠한 형태든 마케팅에 어려움을 겪고 있다면, 비즈니스를 성공시키는 마케팅을 위한 컨설팅 / 대행 서비스를 통해 도움을 받는 것이 좋다.
마티니(Martinee)에서는 이 글에서 언급된 모든 솔루션들의 컨설팅 / 대행 서비스를 제공한다.
다들 알다시피 가성비는 가격대비 '성능'의 비율을 의미한다.
가격은 솔루션 가격을 의미할 것이고, '성능'은 무엇을 기준으로 판단해야할까?
앞서 설명한 솔루션별 기능과 장점들도 성능에 포함되지만, 솔루션을 사용하는 사용자의 영향이 더 크다고 본다.
결국 성능을 결정하는 가장 큰 요인은 파일럿인 것이다.
많은 회사들과의 미팅, 컨설팅을 통해 솔루션 없이도 높은 수준의 CRM을 실행하는 곳도 발견한 반면, 그냥 CRM 솔루션으로 무분별한 메시지만 발송하는, 소위 '앱푸시 발사대'로만 사용하는 경우도 많이 보았다.
자신의 도메인에 적합한 솔루션을 선택하고, CRM 마케팅을 꾸준히 개선시키고 학습하는 마케터가 CRM 마케팅 솔루션의 가성비를 결정하는 키를 쥐고 있다.
November 13, 2024
CRM 마케팅이 중요해지면서 많은 기업들이 Braze를 도입하고 있다.
대부분 앱 푸시 발송과 개인화 마케팅을 위해 Braze를 사용하지만, 다양한 기능을 활용해 마케팅을 고도화하는 경우는 많지 않다.
아직 Braze 관련 학습 자료나 강의가 부족해 공식 문서에만 의존해야 하다 보니, 많은 마케터들이 Braze의 기능을 제대로 활용하지 못하고 있다.
이 글에서는 Braze를 제대로 활용하고 있는지 점검하고, 놓치고 있는 유용한 기능들을 소개하려 한다.
아래 Braze 용어 중 내가 사용한 적이 있거나, 사용하지 않았더라도 들어본 용어가 있는지 확인해 보자.
(Braze 이용자라면 누구나 사용하는, 꼭 알아야 하는 기능은 빼두었다.)
3개 이상 사용해 봤다면 Braze를 잘 활용하고 있는 셈이다.
하나도 사용해 보지 않았더라도 걱정하지 말자. 지금부터 각 기능의 활용법을 자세히 설명할 예정이다.
Frequency Cappping이란 사용자가 받는 메시지 수를 제한해 피로감을 줄여주는 기능이다.
설정 예시
위와 같이 채널별로 기간과 수신 횟수를 설정할 수 있고, Campaign이나 Canvas에 Tag를 추가하면 특정 캠페인에만 제한을 걸 수도 있다.
예를 들어 이벤트 태그가 있는 캠페인은 하루 1개만 발송하는 식이다.
"푸시가 너무 많이 와요", "인앱메시지가 자주 떠서 불편해요" 같은 VOC를 자주 받는다면 Frequency Capping을 적극 활용해보자. 사용자 경험도 개선하고 고객 만족도도 높일 수 있다.
Braze에서 자주 쓰는 필터로 'X Custom Event Property In Y Days'와 'X Purchase Property In Y Days'가 있다. 실시간으로 반영된다는 장점이 있지만, 몇 가지 제한사항이 있다.
반면 Segment Extension은 아래와 같은 장점이 있다.
예를 들어 일반 필터로는 '지난 30일간 패딩 구매자'만 찾을 수 있지만, Extension으로는 '지난 1년간 패딩 구매자' 세그먼트를 만들 수 있다.
단, Extension은 실시간 업데이트가 아닌 정해진 주기로 업데이트된다. 기존에는 매일 오전 12시마다 업데이트 되었는데, 최근 Weekly, Monthly 옵션이 추가됐다.
Webhook으로 카카오톡, 문자 메시지를 보내는 것 뿐만 아니라 빈 웹훅인 Spacer를 발송하여 A/B Test를 진행하거나, 성과를 측정하는 것도 가능하다.
Spacer 활용 사례
또한 잘못 설정된 Conversion 지표를 보완할 때도 유용하다.
Connected Content는 API를 통해 외부 데이터를 실시간으로 가져와 메시지에 활용하는 기능이다.
활용 가능한 데이터:
이러한 데이터는 Braze에 저장되지 않아 보안성이 높고, 실시간 데이터로 더 정확한 개인화가 가능하다.
API Response 값을 메시지에 바로 사용하거나, Liquid 구문으로 메시지 발송 조건으로 활용할 수도 있다.
API 개발이 필요하지만, 활용하면 한층 더 다양한 개인화 메시지를 만들 수 있다.
Connected Content 사용 사례
1. Open API 활용 : 누구나 이용할 수 있는 Open API를 활용하여 다양한 캠페인을 진행할 수 있다.
2. 내부 API 활용 : 기개발된 API가 있다면 해당 API를 활용하여 다양한 캠페인 운영이 가능하다.
Query Builder는 SQL Query를 사용해 데이터를 출력하는 기능이다.
Campaign Analytics와 Engagement Report를 통해 캠페인 발송 수와 전환 수는 확인할 수 있지만, 유저가 어떤 상품을 구매했는지, 혹은 다른 이벤트가 발생했는지는 알 수 없다.
유저 행동을 더 자세히 분석하고 싶다면 쿼리빌더를 활용해보자. SQL에 익숙하다면 직접 쿼리를 작성할 수 있고, 그렇지 않다면 Query Template이나, AI Query Builder를 통해 쿼리를 생성하여 사용하면 된다.
Query Builder를 통해 N Day Retention과 같은 데이터도 확인할 수 있다.
N Day Retention 활용 사례 보러가기
어트리뷰트 데이터 테이블은 지원하지 않지만, 캠페인, 캔버스, 이벤트, 세션 정보 같은 유용한 데이터는 쉽게 추출할 수 있다. 다양한 분석을 원한다면 Query Builder를 적극 활용하자.
(단, Query Builder는 매월 사용할 수 있는 크레딧이 있으니, 쿼리 실행 시 크레딧이 줄어드는 점을 주의해야 한다!)
앞서 언급한 기능 외에도 Braze를 더 깊이 활용할 수 있는 방법은 많다.
실무로 바빠서 Braze를 자세히 살펴볼 시간이 없더라도, 틈틈이 다양한 기능을 활용해 보다 효율적이고 정교한 CRM 마케팅을 진행하길 바란다.
또한 기존 기능에 새로운 요소가 추가되거나 새로운 기능이 출시되니, 매월 업데이트되는 Braze Release Note를 확인하는 것을 추천한다.
*글의 원문은 최영아님의 브런치스토리 에서도 읽어보실 수 있습니다.
September 23, 2024
엑셀과 스프레드시트를 어느정도 다루시던 분들은 조건부 서식에 어느정도 익숙하실 겁니다.
조건부 서식은 데이터를 보다 효과적으로 표현하고 분석하는 강력한 기능입니다. 이는 특정 조건에 따라 셀의 모양(글자 색상, 셀 색상)을 자동으로 변경하여 중요한 정보를 시각적으로 돋보이게 만드는 기능입니다.
위의 이미지 예시를 보면 더 쉽게 이해할 수 있습니다. 왼쪽은 아무런 설정을 하지 않은 차트라면 오른쪽은 숫자의 백분위수를 기준으로 색상을 표현하였습니다. 오른쪽의 표가 일자별 노출수의 차이를 훨씬 쉽게 이해할 수 있습니다.
조건부 서식의 가장 큰 특징은 데이터에 기반한 동적인 시각화입니다. 사용자가 정의한 규칙에 따라 데이터가 변경될 때마다 서식도 자동으로 업데이트됩니다. 이는 단순히 정적인 색상이나 서식을 적용하는 것과는 다르게, 항상 최신 데이터를 반영한 시각적 표현을 제공합니다.
루커스튜디오와 같이 실시간으로 변하는 데이터 시각화 솔루션에서는 필수적으로 활용하면 좋을 기능입니다.
루커스튜디오에도 이러한 조건부 서식이 있으며 다른 엑셀과 Tableau와 같은 BI와 유사한 기능을 사용할 수 있습니다.
기본적으로 'Tablea' 차트와 'Score' 차트에서 활용가능합니다.
단색과 색상스케일에 따라 구분할 수 있습니다. KPI 달성이나 임계값 달성에 대한 강조를 원한다면 단색 유형이 유용합니다. 반면에 데이터의 양이 많고 데이터간 상대적 차이가 중요하다면 색상 스케일이 유용합니다.
규칙별로 하나의 조건만 가능하며 조건 형식은 셀 또는 전체 행에 적용할 수 있습니다.
August 29, 2024
Modern Growth Stack, 모던 그로스 스택으로 디지털 마케팅 솔루션 에어브릿지(Airbridge)와 브레이즈(Braze), 앰플리튜드(Amplitdue) 등을 다루는 AB180이 개최하는 디지털 마케팅 세미나입니다.
https://www.moderngrowthstack.com/speaker
이번 MGS 2024는 'FUTURE OF GROWTH'라는 주제로 2024.07.31 (수) 9시부터 18시까지 서울 코엑스 1층 그랜드볼룸 & 2층 아셈볼룸에서 진행됩니다.
디지털 마케팅 분야에서 MGS만큼 큰 규모로 개최되는 세미나는 3개+ 정도 있습니다.
1. MGS: Modern Growth Stack by AB180
2. The Maxonomy by CJ Maxonomy
3. MAX Summit by 모비데이즈(MOBIDAYS)
2022년에는 맥스서밋에서 발표를 했었고("온택트 시대, 푸드 테크 기업의 新 마케팅 전략"), 2023년에는 The Maxonomy에서 마티니의 발표 자료("마케팅하는데 개발이 왜 문제일까?")를 만들었고 2024년은 MGS에 마티니의 일원으로 참가하는데요.
MGS와 같은 대형 세미나를 가면 보통 한 장소에 홀이 여러 개 (main, sub1, sub2...) 있고 세션이 나눠서 진행됩니다. 관심사에 맞는 세션을 들으러 시간마다 자리를 이동하곤 하고요.
세션은 다양합니다.
인하우스(브랜드나 플랫폼)에서 마케팅 전략 및 실행안에 대한 인사이트를 나눌 때도 있고 솔루션사(Amplitude, Braze, Airbridge 등 PA, CRM, MMP Soltuion)에서 솔루션의 이점에 대해서 말하기도 하고요. 광고 플랫폼이나 대행사, 컨설팅사 등 주제와 연사도 다양하고 그에 따라 내용과 난이도도 다채롭습니다.
2024년 연사진만 슬쩍 봐도 구글(Google), 메타(Meta), X(엑스: 구 트위터 twitter), 커니(Kearny) 등의 광고 플랫폼들과 컨설팅사 및 29CM 등의 인하우스 눈에 띄네요.
디지털 마케팅 분야에서 유명한 AB180, CJ Maxonomy, 모비데이즈가 개최하는 세미나들인 만큼 운영하는 세션의 주제만으로도 트렌드를 파악하기 충분합니다. 오늘은 MGS 2024의 세션을 통해 최근의 마케팅 트렌드가 무엇인지 알아보려고 합니다.
우선 AB180측에서 분류해 둔 키워드는 #글로벌, #애드테크·마테크, #트렌드 #프라이버시 #게임 #제품분석 #AI #MMP #UA #크리에이티브 #풀퍼널마케팅 #CRM #수익화 등입니다.
키워드가 좀 많다 보니, 세션들을 확인하고 좀 더 포괄적으로 공통되는 주제로 분류하자면 아래 4개의 카테고리 정도입니다. 관련 주제에 어떤 세션들이 준비되어 있는지 짚어봅니다.
디지털 마케팅에서 이제 인공지능(AI)이 빠질 수 없겠죠. AI로 마케팅에 들어가던 인풋을 줄여주거나 성과를 개선하거나 데이터를 활용하는 내용 위주인 듯합니다.
이주원 Meta | Head of Marketing Science, Korea
https://ko-kr.facebook.com/business/ads
안재균 Moloco | 한국 지사장
Andy Carvell Phiture | CEO
이수현, Snowflake | 테크 에반젤리스트
Adrien Kwong, Xtend | Chief Commercial Officer
신창섭 X 코리아 | 대표
CRM: Customer Relationship Management 고객관계관리라는 아주 넓은 의미의 단어로 통용되고 있는 CRM 마케팅은 사용자와 닿는 메시지(팝업 배너, 앱푸시, 카카오톡, 문자, 이메일 등) 위주인데요.
퍼포먼스 마케팅보다는 비용 효율적이고(ex. 광고 소재 클릭당비용 보다는 카톡 발송 비용이 더 저렴한 경우), 웹/앱에서 사용자 행동 기반 개인화가 가능해 그로스해킹/그로스마케팅의 방법론으로도 많이 활용됩니다.
고주연, Braze | Area Vice President of Korea
이건희, 마티니 | 팀장
조형구/강하은, 29CM | Growth Marketer
최동훈, Amplitude | Senior Korea Partner Sales Manager
이재철, 마티니 | 팀장, 이형일, BKR | 이사
조경상, NNT | CEO
민병철, PIEDPIXELS | 사업 이사
오담인, 윤정묵, 장소영, 김형준, AB180 & Airbridge | Customer Success Team
애드테크는 Advertisement+Tech, 마테크는 Marketing+Tech로 광고와 마케팅에 있어 기술을 접목한 형태를 말합니다. 웹이나 앱에서의 성과 측정 및 사용자 행동 분석 등에 필요하죠.
정헌재, AB180 & Airbridge | CPO
김형빈, Viva Republica (Toss) | 부문장
✅ Shaping Android’s Privacy Sandbox
Pan Katsukis, Remerge | Co-Founder & CEO
호명규, Amplitude | 한국영업총괄
진겸, 당근 | 팀장
원하윤, Liner | PM
김동훈, 도소희, 현대카드 | Online Marketing
Bob Wang, PubMatic | Country Manager, Greater China & Korea
이승제, 딜라이트룸 | Product Owner, BD Lead
김나은, AB180 & Airbridge | VP of Growth
최동훈, Amplitude | 한국비즈니스총괄
최준호, Braze | Partner Sales Director
이수현, Snowflake | Tech Evangelist
윤가비, Apptweak | 한국 지사장
#글로벌, #애드테크·마테크, #트렌드 #프라이버시 #게임 #제품분석 #AI #MMP #UA #크리에이티브 #풀퍼널마케팅 #CRM #수익화
그로스마케팅, 그로스해킹, 그로스전략은 아직까지도 유효한 트렌드인 듯합니다. 그렇지만 결국 그로스를 이뤄내기 위해서는 조금 더 세부적인 부문의 실행 방안들이 필요합니다.
실행방안 #풀퍼널 #제품분석 #UA #크리에이티브 #CRM #수익화
사용자 여정의 풀퍼널(Full-Funnel)과 제품을 분석했을 때 프로덕트의 상황에 따라 UA(User Acquisitio, 신규 사용자 획득)에 초점을 맞춰야 할 수도 있고, 크리에이티브를 다변화하며 소재 A/B테스트를 운영해야 할 수도 있고, CRM을 통해서 사용자들에게 다음 단계 혹은 리텐션을 유도해야 할 수도 있고, '구매 전환'을 통한 수익화를 최우선으로 해야 할 수도 있습니다.
.
.
.
최근에 작은 브랜드를 운영하시는 대표님을 만나 뵌 적이 있었는데, 정말 열심히 하는 분이었습니다. 주말이면 온갖 웨비나와 세미나를 섭렵하시고 책도 읽고 강의도 들으시더라고요. 마케팅이 아닌 다른 부문에서 한평생 일하시다가 중장년의 나이에 공부를 하다 보니 따라가고 싶어 노력하신다 하셨어요.
이런저런 이야기를 하다가 저는 대표님께, 이제는 그만 듣고 또 공부하고 그냥 해야 할 때라고 말씀드렸습니다. 지금 수능 보고 낮은 점수받기 싫어서 계속 인터넷 강의 듣는 N수생 같다고요.
할 때는 해야 합니다. 다만 남들이 이미 풀어본 문제를 어떻게 푸는지 알고 가면 좋겠죠. 그 방식이 꼭 나에게도 맞을 거라는 보장은 없지만, 그래도 참고하면 방향성을 잡기에는 훨씬 수월하니까요. 그래서 디지털 마케팅 세미나들이 꽤 유용하지 않나 싶습니다.
August 28, 2024
행사명 : Braze Personalization Master Class Advanced 세미나
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 8월 26일 월요일 오후 7시
이번 세미나의 경우 심도 있는 개인화 기능 활용 실습을 위해 신청해주신 이메일로 Braze 데모 계정 발급을 통해 실습해보실 수 있게 하였고 실습 시간 비중을 늘려 개인화 Liquid 및 Connected Content 기능을 충분히 활용해보실 수 있게 준비했습니다.
지난 개인화 클래스는 전반적인 개념과 기능의 일부를 학습하고 활용해보았다면 이번 클래스는 Braze Liquid가 어떻게 작동하는지 문법을 상세하게 하나하나 배울 수 있는 시간이었습니다.
변수의 지정과 호출, 지정한 변수들의 수식을 적용하는 방법과 더불어 문구, 계산, 날짜 관련 Filter를 살펴보며 익혔습니다. if, for, case when 3가지 태그도 수식과 함께 확인하며 사용하는 시점을 배워보았습니다.
실습의 경우 Nike 제품을 구매한 이력이 있는 유저에게만 보낼 개인화 메시지를 구현해보았습니다.
Connected Content는 Liquid의 활용 시점과 차이점을 비교해보며 어느 상황에서 활용할지 살펴보았습니다.
심화 사례로 쿠폰 만료 D-1 넛지 자동화, 날씨 기반 마케팅 사례를 통해 어떻게 적용할 수 있는지 배웠고 유저가 위치한 도시별로 Connected Content를 활용하여 푸쉬 제목, 바디, 이미지까지 개인화해보는 실습 시간을 가졌습니다.
마티니가 CRM 마케팅을 하면서 생기는 궁금증과 Braze 활용에 있어 어려운 부분을 해소해드리고 CRM 인사이트를 공유하며 소통하기 위한 공간을 마련하였으니 많은 신청 바랍니다.
11월에는 Braze Automation & Data Analytics / Utilization 세미나로 CRM 캠페인 자동화와 더불어 데이터 분석 및 활용해보는 시간을 가질 예정이오니 마티니 블로그 사전등록 페이지를 통해 많은 관심으로 참여 부탁드리겠습니다!
마티니가 여러분의 CRM 성공을 위해 함께 합니다.
August 27, 2024
최근 데이터 시각화 및 분석 도구들이 발전하면서 사용자 친화적인 인터페이스가 중요해지고 있습니다. Google Looker Studio는 이러한 요구에 맞춰 다양한 기능을 제공하며, 그 중 하나가 선형(Line) 차트와 막대(Bar) 차트를 전환할 수 있는 토글 스위치 기능입니다. 물론 기본적인 제공 기능 아니지만 루커스튜디오의 기능을 활용하면 간단하게 구현 가능합니다.
데이터를 분석하는 과정에서 서로 다른 유형의 차트를 사용하면 데이터를 다양한 각도에서 시각화할 수 있습니다. 예를 들어, 막대 차트는 특정 시점의 데이터를 비교하는 데 유용하며, 선형 차트는 시간에 따른 변화를 나타내는 데 적합합니다. 이러한 차트들을 손쉽게 전환할 수 있는 기능이 있으면, 사용자는 더 쉽게 다양한 인사이트를 얻을 수 있습니다.
💡스위치 필터 사용 시 매개변수는 숫자형만 반응. 따라서 텍스트가 아닌 데이터 유형을 숫자로 설정하여 매핑.
💡BarIF(차트 타입 = 1, Revenue, null)
💡LineIF(차트 타입 = 2, Revenue, null)
이러한 토글 스위치 기능은 사용자에게 더 나은 데이터 시각화 경험을 제공합니다. 사용자는 필요에 따라 차트를 전환하며 데이터를 더 직관적으로 이해할 수 있습니다. 이는 데이터 분석의 효율성을 높이고, 더 나은 결정을 내리는 데 도움을 줍니다.
Google looker Studio에서 선형 및 막대 차트를 전환하는 토글 스위치를 구현하는 방법을 알아보았습니다. 이러한 기능은 데이터 분석을 더욱 직관적이고 효율적으로 만들어 줄 것입니다. 이제 여러분도 데이터 시각화를 한 단계 업그레이드 해보세요.
August 26, 2024
에어브릿지(Airbridge)는 데이터 수집부터 마케팅 성과 분석까지 하나의 대시보드에서 진행하는 마케팅 성과 분석 솔루션(MMP)으로, 라스트 터치 어트리뷰션, 멀티 터치 어트리뷰션, 마케팅 믹스 모델링 등 다양한 방법으로 앱과 웹사이트의 마케팅 성과를 함께 분석할 수 있는 통합 마테크 솔루션입니다.
오늘날 MMP 솔루션은 광고주들에게 필수적으로 사용되고 있습니다. 에어브릿지 역시 그 중 하나로, 별도의 연동 없이 통합된 데이터 분석과 어트리뷰션이 가능한 것이 강점입니다.
에어브릿지의 이벤트 구조는 타 플랫폼에 비해 비교적 복잡하기 때문에 이전에 GA4 및 타 분석 솔루션만을 사용하다 에어브릿지를 처음 접했다면 다소 혼란스러울 수 있습니다. 저 역시 꽤 헤맸던 것 같습니다.
이러한 계기로 에어브릿지 택소노미를 설계할 당시 이벤트 구조를 이해하는 데 실제로 도움이 됐던 자료들과 GA4의 구조를 비교하여 전체적인 구조를 설명드리고자 합니다.
ㅡ
에어브릿지의 이벤트 및 어트리뷰트 호출 코드의 작성 방법은 아래 세 가지 경로를 통해 확인하실 수 있습니다.
1. 에어브릿지 유저 가이드(Airbridge Help Center)
유저 가이드를 통해서도 코드를 작성하는 데에는 문제가 없지만 2번 자료의 코드 구조가 비교적 효율적이므로 가급적 2번 자료를 참고하시는 것을 권장드립니다.
2. AB180 깃허브(Github)
1번 유저 가이드의 코드 예시 보다 더욱 상세한 전체 코드를 확인하실 수 있습니다.
3. 유저 가이드 및 에어브릿지 공식 문서(Data Spec)
에어브릿지에서 제공하는 Event와 Attribute의 목록과 상세 정보들을 확인하실 수 있습니다.
에어브릿지 이벤트 구성 요소에는 카테고리(Event Category), 액션(Event Action), 라벨(Event Label), 밸류(Event Value), 어트리뷰트(Attribute), 트리거(Trigger)가 있습니다.
다소 복잡해 보이지만 조금만 들여다보면 이해하기 쉽습니다.
위 이벤트 구성 요소의 개념들이 조금 생소하신 분들은 GA4의 예시로 보면 이해하기 쉽습니다.
(GA4의 Metrics & Dimension에 대한 기본 개념이 궁금하신 분들은 관련 자료를 참고해 주세요)
- GA4 보고서
- Airbridge 보고서
GA4의 측정기준(Dimensions)이 에어브릿지의 카테고리, 액션, 라벨의 역할을 하고,
측정항목(Metrics)이 에어브릿지의 밸류의 역할을 한다고 비교해 볼 수 있습니다.
예를 들어, 의류를 판매하는 모 기업의 마케팅 담당자가 구매 이벤트 발생 시 아래와 같은 항목들의 데이터를 수집한다고 가정합니다.
Purchase
모두 시맨틱 어트리뷰트로 수집 가능한 항목들이지만 어트리뷰트의 경우 에어브릿지 리포트에서 확인할 수 없기 때문에 CDP와 같은 고객DB에 접근하거나 별도의 솔루션으로 전처리하여 확인해야 합니다. 이런 경우 유용하게 쓰일 수 있는 항목이 액션과 라벨입니다.
만일 자주 사용하는 어트리뷰트 항목을 에어브릿지의 리포트와 대시보드에서 활용하고자 한다면 어트리뷰트 항목을 액션과 라벨에 세팅하여 어트리뷰트에 대한 데이터를 리포트에서도 확인할 수 있습니다.
다시 말해, 1개의 카테고리와 2개의 어트리뷰트(액션, 라벨)에 대한 통계를 에어브릿지의 리포트와 대시보드에서 쉽고 빠르게 확인할 수 있습니다.
아래 이미지는 스탠다드 이벤트 중에서 일정 예약 이벤트(airbridge.subscribe)의 예시입니다. 일정을 예약한 지역은 액션 또는 라벨로 수집할 수 있으며, 시맨틱 어트리뷰트를 활용하면 예약한 ID(scheduleID)와 예약일시(datetime)를 수집할 수 있습니다.
밸류는 에어브릿지 이벤트가 수집한 숫자를 계산에 이용하기 위해서 선택해야 하는 구성요소입니다. 에어브릿지 이벤트의 밸류로 수집된 숫자만 계산에 이용할 수 있습니다. 밸류로 소수점 9자리 이하 숫자까지 수집할 수 있습니다.
예를 들어, 레비뉴 리포트(Revenue Report)에서 판매한 제품의 가격을 더해 전체 판매 가격을 계산하거나 디지털 서비스의 구독료를 전부 합해서 전체 구독료를 확인하기 위해서는 밸류를 반드시 이벤트 구성요소로 사용해야 합니다.
또한, 밸류로 수집된 데이터는 밸류로 수집된 다른 데이터와 계산할 수 있습니다. 액션이나 라벨로 수집된 데이터는 계산에 활용할 수 없습니다. 그러나 이벤트 발생 횟수는 밸류 사용 여부와 상관없이 확인할 수 있습니다.
예시) 구매 완료 이벤트
위 예시와 같이 액션과 라벨, 밸류 모두 숫자로 수집한다고 하더라도 밸류로 수집한 데이터만 계산할 수 있으며, 액션과 라벨로 수집한 데이터는 계산할 수 없습니다. 예시에서는 구매 완료 이벤트의 밸류로 수집한 데이터를 더해서 30,000이라는 수치를 얻을 수 있습니다.
매출 관련 데이터는 속성으로 수집하는 것이 일반적이나, 에어브릿지의 경우에는 Attribute가 아닌 Value로 수집합니다. 즉 밸류에는 보통 구매액이 들어가고, 어트리뷰트에서는 기타 정보들을 수집합니다.
Semantic Attribute로 사용할 수도 있지만, Actuals Report나 Revenue Report에서는 이벤트 밸류에 Semantic Attribute의 isRevenue 값을 True로 설정한 카테고리(이벤트)로부터 발생한 매출액(Value 값)을 기준으로 확인하기 때문에 이는 적절하지 않습니다. (설정 가능한 Revenue 이벤트 수: 최대 5개)
Revenue 이벤트를 설정할 때 한 가지 유의할 점은 Revenue의 구조가 다양한 서비스일 경우(전환 포인트: 포인트 충전, 제품 결제, 광고 충전 포인트 등), Revenue Report에서 확인할 최종 전환 기준 한 가지를 선정하셔야 합니다.
만일 아래와 같이 구매 완료 시 2개의 매출 관련 이벤트가 동시에 호출되고 2개의 이벤트 모두 Revenue 이벤트로 설정한 경우 중복집계가 될 수 있기 때문입니다.
예시)
- 주문 완료 이벤트 발생 시 단위별 이벤트 동시 호출
매출액 집계 기준을 제품 단위로 볼지, 주문서 단위로 볼지 결정하고 결정된 하나의 카테고리(이벤트)에 isRevenue를 세팅해야 중복집계를 방지할 수 있습니다.
따라서 Revenue로 집계할 이벤트와 기타 매출 관련 데이터를 집계해야 하는 이벤트를 별도로 관리하시는 것을 권장드립니다.
각 카테고리(이벤트)에는 다양한 속성 정보가 수집되는데, 플랫폼마다 정의하는 '속성명'이 상이합니다. GA의 경우 Parameter, 에어브릿지의 경우 Attribute로 정의합니다. 이벤트(카테고리)명 역시 GA4의 경우 Event, 에어브릿지의 경우 Standard Event라고 정의합니다. 각 플랫폼별로 기본적으로 제공되는 속성들이 있으며, 에어브릿지의 경우 Data Spec에서 확인이 가능합니다.
Airbridge Event
Airbridge Attribute
따라서 데이터의 수집 구조를 충분히 고려하여 분석 환경을 구축해 놓는 것이 좋습니다.
August 23, 2024
앰플리튜드(Amplitude) Product Analytics, PA라고도 불리는 분석 솔루션 중 하나입니다. 구글에 '앰플리튜드'를 검색했을 시 스폰서(광고) 제외 두 번째 위치에 제 브런치의 글이 나옵니다. 어떻게 했을까요?
https://brunch.co.kr/@marketer-emje/8
상위노출 방법 전에 SEO의 개념을 먼저 훑고 갑니다!
Search Engine Optimization의 약자로, 검색엔진을 최적화한다는 뜻입니다. *검색엔진은 Google, Naver와 같이 '검색'을 통해 정보를 찾아주는 플랫폼이죠.
즉 SEO란 검색엔진에 노출되는 페이지를 최적화하여 상위 노출을 시키고, 특정 키워드를 검색한 사용자들이 상위 노출된 페이지를 보고 클릭하여 사이트에 '무료'로 유입될 수 있도록 하는 것을 말합니다.
사실 SEO 최적화라는 말은 Optimiziation의 뜻이 중복되는 말이지만, '최적화'가 가장 중요한 부분이니 만큼 강조된다고 생각할 수 있습니다.
SERP는 Searh Engine Result Page의 약자로 검색 결과 페이지라는 뜻입니다. 검색엔진에 특정 단어를 검색했을 시 노출되는 결과 페이지를 말합니다. 구글에 'SEO 최적화'를 검색했을 시의 SERP를 예시로 보면
1. 추천 스니펫 영역 2. 개별 사이트/페이지 노출 영역으로 구분되어 있네요. 구글 SERP의 구조 상, 스니펫은 없는 경우도 있고, 광고(sponsor)가 추가되는 경우도 많습니다.
CPC가 O원입니다. 배너 광고나 검색 광고처럼 Click per Cost(클릭당 비용)이 발생하지 않습니다. 즉 SEO 최적화에 의해 상위노출된 페이지로 생기는 트래픽은 '무료'로 발생한다는 것이죠.
이는 마케팅에서 중요한 포인트입니다. 구글 검색광고나 네이버 검색 광고 중 경쟁 강도가 높은 키워드들의 경우 한 번의 클릭에 1, OOO원은 기본이며 비싸게는 1O, OOO원~2O, OOO원의 비용이 듭니다. (단 한 번의 클릭인데요! 심지어 그다음 단계로 전환될 것이라는 보장도 없습니다, 실수로 눌려서 예산은 소진됩니다.)
그런데 SEO 최적화로 상위노출이 되는 페이지들은, 맨 처음 페이지 제작에 들어가는 초기 비용을 제외하면 추가 비용이 들지 않습니다. 꾸준히 새로운 사용자가 유입되고, 트래픽이 발생합니다.
앰플리튜드 관련 글은 4월에 조회수 2,000 > 5월에 조회수 3,000 > 7월에 조회수 4,000을 돌파했습니다.
다른 브런치 글들에 비하면 작게는 4배, 크게는 10배 차이입니다.
물론 미미한 숫자이지만 이렇게 생각하면 꽤 크지 않나요? 이런 자연 유입이 여러 키워드에서 잡힌다면 DAU/MAU에 꽤 유효하게 작용하게 됩니다.
클릭당비용(CPC) 외에 클릭률(CTR)을 본다면, 자연 영역에서 최상위 노출이 될 시 클릭률이 최대 53%에 달한다는 결과가 있었습니다. (*제가 사용자일 때도, 전 스폰서/광고가 걸린 페이지는 거의 안 누르긴 합니다.)
SEO 최적화, 즉 검색엔진에 잘 맞는 페이지로 만들어줘야 상위노출이 잘 잡힙니다. 여기서 SEO 방법론은 몇 가지로 나눌 수 있습니다.
웹사이트 내부에서 SEO를 최적화할 수 있는 요소입니다. 타이틀 태그와 메타 설명(meta description), 헤더 태그(header tag: H1, H2, H3...), 키워드 선정 및 사용, 콘텐츠 품질(이미지 포함), 링크 활용, 로딩 속도, 모바일 친화성 등이 있습니다.
내부에서 관리할 수 있는 영역인 것이지, 내부에서의 요소는 외부에도 고스란히 영향을 미칩니다. 무신사의 디스이즈네버댓 브랜드 페이지를 보면 내부에서 기재해 둔 텍스트가 구글 검색 시 동일하게 노출되는 것을 확인할 수 있습니다.
웹사이트 외부에서 SEO를 최적화할 수 있는 요소입니다. 백링크(back-link), On-page SEO에서는 페이지 내에 링크를 걸었던 것과 반대로 링크가 걸림 '당하는 것'입니다. 검색엔진에서 노출에 있어 선호하는 신뢰도가 높은 사이트 등 다른 사이트에서 자신의 사이트로 연결되는 링크가 있으면 좋습니다. 이외 SNS 등의 소셜 미디어, 인플루언서 등의 활용이 있습니다.
제가 더 주요하게 소개하고자 하는 SEO 최적화 방법론은 콘텐츠 SEO와 테크니컬 SEO로 나눌 수 있습니다.
콘텐츠 SEO에 주요한 요소는 키워드와 콘텐츠, 메타데이터입니다.
키워드 최적화는 프로덕트/서비스와 사용자, 시장, 경쟁사(유사 서비스)에서 사용하는 키워드를 분석하고 활용하는 것이 중요합니다.
a. 프로덕트/서비스에서 사용하는 키워드
b. 사용자가 사용하는 키워드
c. 시장에서 사용하는 키워드
d. 경쟁사가 사용하는 키워드
콘텐츠 최적화는 앞서 키워드 분석을 통해 선정한 주요 키워드 위주로 콘텐츠의 내용을 채우는 것과 콘텐츠의 형식을 구조화하는 것이 중요합니다.
a. 콘텐츠의 내용
b. 콘텐츠의 형식
메타 데이터는 웹 페이지 관련 정보를 제공하여 검색 엔진 및 소셜 미디어 플랫폼 내 페이지의 표시 방식에 영향을 미칩니다.
메타 데이터(메타 태그) 최적화
메타 데이터는 웹 페이지의 정보와 속성을 설명하고 검색 엔진 및 소셜 미디어에서 공유할 때 사용되어, 사용자에게 페이지 내용을 이해시키고 검색 엔진이 페이지를 색인화하는 데 도움을 줍니다.
*HTML 구조는 웹 페이지의 레이아웃과 콘텐츠를 정의하고, 시맨틱 태그는 HTML 구조 내에 의미론적으로 중요한 부분을 강조하며 메타 데이터는 검색엔진과 사용자에게 그 정보를 제공하는 것입니다.
자사몰을 보유하고 있을 때는 위와 같은 요소들을 고려하는 것이 필요합니다. 다만 개인의 페이지일 때는 검색엔진에 따라 유리한 사이트들이 있습니다. 예를 들어 똑같이 글을 쓰는 플랫폼이라고 하더라도, '네이버'에서는 네이버 블로그만이 노출되는 것처럼 '구글'에서는 워드프레스, 티스토리, 브런치 등이 유리합니다.
신경 쓰지 않았습니다. 고려했다면 워드프레스 등으로 블로그를 구축했겠으나... 시간을 아끼고자 했습니다. 대신 구글 상위노출을 목표로는 브런치를, 네이버 상위노출을 목표로는 개인 블로그를 활성화시켰습니다.
신경 많이 썼습니다! 키워드를 찾고, 선정하고, 글감을 목록화했습니다.
약 60장의 페이지에 꾹꾹 눌러 만들었습니다. 성함/이메일/회사의 정보를 입력해 주시면 다운로드하실 수 있어요!
August 23, 2024
지난 7월 31일, 국내 최대 마케팅 컨퍼런스 MGS 2024가 뜨거운 열기속에서 마무리되었습니다.
🍸 "우리 잘하고 있는건가?": CRM 마케터들이 궁금해하는 고민과 해결방안
🍸 버거킹도 Amplitude를 쓴다고? 어떻게 쓰는데?
🍸 쏘카 CRM 마케터가 일하는 방법: Braze로 개발자 없이 캠페인 고도화하기
MGS 2024 컨퍼런스에서는 위와 같은 세션을 진행했었는데요. MGS에서 진행했던 마티니 세션을 듣지 못하신 분들을 위해 2024 Recap 행사를 진행했습니다. 이번 행사에서는 AB180과 Snowflake의 세션도 확인할 수 있었고 마케팅과 개발 간극부터 마테크 솔루션 도입 및 활용까지 다양한 고민과 궁금증을 해소해드리는 자리를 마련했습니다.
마티니 세션에서는 대표 선규님이 마케팅의 현 시장 상황 설명을 바탕으로 마티니가 가지는 강점과 차별점을 소개해드렸고 이어 마티니 Growth팀 리더 재철님이 버거킹의 Amplitude 도입 및 활용 과정을 함께하며 진행한 내용들을 공유해드렸습니다.
구매 횟수별 고객 특성과 구매 시간대별 고객 특성 2가지 실험의 과정과 결과를 Amplitude를 활용한 버거킹 쿠폰 설계 및 적용 과정을 바탕으로 설명해드렸습니다.
CRM팀 리더 건희님이 마티니 CRM팀이 수많은 고객사와 CRM 담당자들과 협업하고 소통하며 느꼈던 고민과 6,000여개가 넘는 CRM 캠페인을 런칭하며 경험했던 해결 방안들을 공유해드렸습니다.
AB180 세션에서는 SKAN의 개념와 활용법부터 ATT 동의율을 극대화시킬 수 있는 팁들까지 배울 수 있는 시간이었습니다.
Snowflake 세션에서는 Snoiwflake의 AI 기반 Data Cloud 특징과 장점을 바탕으로 비즈니스 발전 가능한 부분을 피자헛 사례를 통해 확인할 수 있었습니다.
행사 세션이 끝난 후엔 마티니와 AB180, Snowflake가 MGS와 더불어 이번 세션 때 받지 못했던 질문과 고민들을 함께 듣고 공유하며 참석해주신 분들과 자유롭고 편하게 다양한 이야기들을 나눌 수 있었습니다.
MMP부터 PA까지 마테크 솔루션 도입과 활용에 관해 소통하는 시간을 가졌습니다.
마티니는 퍼포먼스, 그로스, CRM의 ‘&’를 기반으로 유기적으로 협업하며 체계적인 단계로 비즈니스 성장을 이끌고 있습니다.
버거킹 사례에서 설명드린 것처럼 Amplitude와 Braze 활용과 연계뿐만 아니라 다양한 MMP, CRM, PA 툴의 연계 및 활용까지 마티니가 함께 합니다. 도입 초반부터 활용까지 모두 알려드리는 마티니와 함께 마테크 솔루션을 제대로 활용해서 비즈니스를 성장시켜보세요.
August 23, 2024
디지털 시대의 급속한 발전과 함께 마케팅 환경이 빠르게 변화하고 있습니다. 다양한 채널을 통한 고객 접점이 증가하면서 기업들은 복잡해진 고객 관계 관리(CRM)에 직면하고 있습니다. 이러한 상황에서 CRM 대시보드의 중요성이 더욱 부각되고 있습니다.
CRM 대시보드는 여러 채널에서 수집된 CRM 캠페인 데이터를 통합하여 분석하고, 현황을 한눈에 파악할 수 있게 해주는 강력한 방법입니다. 다양한 CRM 채널로 인해 단일 기준으로 분석하기 어려운 데이터들을 대시보드를 통해 효과적으로 통합하고 시각화함으로써, 마케터들은 보다 신속하고 정확한 CRM 마케팅 의사결정을 내릴 수 있게 됩니다.
이러한 CRM 대시보드의 활용은 단순히 데이터를 보여주는 것에 그치지 않습니다. 실시간으로 캠페인 성과를 모니터링하고, 고객 행동 패턴을 분석하며, 각 채널별 효과를 비교할 수 있게 해줍니다. 이를 통해 기업은 더욱 효율적인 마케팅 전략을 수립하고, 고객 경험을 개선하며, 궁극적으로는 ROI를 향상시킬 수 있습니다.
본 글에서는 범용적으로 활용가능한 CRM 대시보드를 템플릿을 제공합니다.
Looker Studio CRM 캠페인 대시보드 템플릿은 마케팅 캠페인의 성과를 실시간으로 모니터링하고, 데이터를 시각화하여 분석할 수 있도록 돕는 강력한 도구입니다. 이 템플릿을 통해 효과적인 의사결정을 지원하고, 전략을 최적화할 수 있습니다.
Looker Studio CRM 캠페인 대시보드 템플릿은 캠페인의 실시간 성과 모니터링, 데이터 시각화, 마케팅 전략 최적화를 목적으로 활용됩니다. 이를 통해 효과적인 의사결정과 전략적 개선이 가능합니다.
실시간 대시보드를 통해 데이터를 업데이트하고, 다양한 필터 기능을 사용하여 원하는 데이터를 정확히 추출할 수 있습니다. 맞춤형 리포트를 생성하여 필요에 따라 커스터마이즈된 분석이 가능합니다.
마케팅 팀, 경영진, 데이터 분석가 등 다양한 사용자들이 이 템플릿을 활용하여 캠페인 성과를 모니터링하고 분석할 수 있습니다.
1. 주기적인 업데이트
2. 필터 활용
3. 성과 지표 설정
4. 데이터 비교
5. 팀과 공유
템플릿은 마케팅 캠페인의 성과를 종합적으로 관리하고 분석하는 데 유용하며, 데이터를 기반으로 한 전략적 의사결정을 지원합니다.
August 21, 2024
지난 편에서는 각 솔루션별 데이터 수집 방법(바로가기)에 대해서 알아보았습니다.
1. Third Party 데이터 수집 자동화
2. 수집된 데이터 전처리하기
3. 시각화하기
이번에는 수집된 데이터를 활용하여 어떻게 전처리 해야 되는지 알아보겠습니다.
각 데이터 셋들은 분석하려는 차원(dimension)을 기준으로 집계(group by)를 통해서 동일한 형태로 전처리한 후 조인 연산을 통해 데이터를 통합하는 과정이라고 생각하시면 됩니다.
마케팅 성과를 분석하기 위해서 필요한 데이터 다음과 같습니다.
Dimension : 날짜(일별), 유입소스(GA4 = utm_source, Appsflyer = Media_source), 캠페인
Metric : 구매수, 매출, 인스톨 수
GA4가 웹, 앱 모두 트래킹을 할 수 있지만 WEB은 GA4, APP은 MMP로 성과를 합쳐서 보실 겁니다.
GA4, Firebase는 앱과 웹 내 고객 행동 분석에 주로 쓰이는 툴이고 MMP 는 광고 성과를 측정하는 툴이니깐요
그러면 이렇게 됩니다.
<GA4 데이터 집계> - WEB
Dimension : 날짜(일별), 세션 소스, 캠페인
Metric : 구매수, 매출
<MMP 데이터 집계> - APP
Dimension : 날짜(일별), Media_source, 캠페인
Metric : 구매수, 매출, 인스톨 수
집계된 두개의 테이블을 UNION 다시 한번 집계를 해줍니다.
이렇게 하면 집계된 웹앱 데이터 통합이 되었습니다. (MMP 데이터 전처리 과정은 생략)
Dimension : 날짜(일별), Media_source, 캠페인
Metric : 구매수, 매출, 인스톨 수
브레이즈 커런츠(braze currents)데이터는 유저 인게이지먼트 데이터입니다.
여기에는 유저별로 어떻게 우리 서비스로 참여를 하고있는지를 기록한 데이터들이 기록되어 있으니 메시지 발송 수단별로 노출, 클릭 성과들이 들어있습니다. 하지만 우리는 성과(구매) 판단은 MMP, GA4로 해야 하므로 서로 다른 데이터들을 어떻게 통합해서 볼지를 알아보겠습니다.
커런츠 데이터는 아래와 같이 구성이 되어있습니다.
위와 같은 데이터를 일자, 메세지 발송 타입, 캠페인 or 캔버스별 발송수, 노출수, 클릭수 데이터를 집계를 하기 위해서는 유니크한 ID를 나타내는 차원 데이터를 만들어 줘야 합니다.
동일한 유저라도 캠페인, 캔버스, 베리에이션 등 다양한 형태로 타겟이 될 수 있으므로, 아래와 같이 유니크한 차원 데이터를 만들기 위해 새로운 아이디를 생성합니다. (해당 아이디는 발송 타입별로 카운트하기 위해 활용됩니다.)
차원의 이름은 원하시는대로 명명하시면 되고 저는 user_id_dispatch_id 이렇게 명명하였습니다.
-- 태블로 계산식
IFNULL([User Id],'') + '-' +
IFNULL([Campaign Id],'') + '-' +
IFNULL([Message Variation Id],'') + '-' +
IFNULL([Canvas Id],'') + '-' +
IFNULL([Canvas Variation Id],'') + '-' +
IFNULL([Canvas Step Message Variation Id],'') + '-' +
IFNULL([Dispatch Id],'')
다음으로 캠페인 단위로 성과를 집계할 예정이기 때문에 캠페인 차원을 만들어줘야 합니다.
왜냐하면 브레이즈에는 캠페인과 캠버스로 나뉘는데 campaign_name 값이 존재하면 canvas_name 이 빈값이고 거꾸로 canvas_name 값이 존재하면 campaign_name이 빈값이기 때문입니다.
-- 태블로 계산식
IFNULL([Campaign Name],[Canvas Name])
{send_type}_click 이런 식으로 차원 이름을 명명하고 아래와 같은 태블로 계산식으로 차원을 만들어줍니다.
이렇게 되면 email_click, push_click, in_app_message_click 이벤트별로 ID(user_id_dispatch_id)를 생성됩니다.
-- 태블로 계산식
{ FIXED [user_id_dispatch_id],[Event Type] : COUNTD(IF CONTAINS([Event Type], 'inappmessage_click') THEN [user_id_dispatch_id] END)}
최초에 S3에 적재된 currents 데이터(avro 파일)를 DW에 적재할 때 파일별 Event 구분을 위해 Event_Type 칼럼을 생성하였습니다. (이전 글을 참고해 주세요)
['users.messages.email.Open.avro',
'users.messages.email.Click.avro',
'users.messages.pushnotification.Send.avro',
'users.messages.inappmessage.Click.avro',
'users.messages.email.Delivery.avro',
'users.messages.pushnotification.Open.avro',
'users.messages.inappmessage.Impression.avro']
-- 태블로 계산식
IF CONTAINS([Event_Type], 'email') then 'email'
elseif CONTAINS([Event_Type], 'push') then 'push'
elseif CONTAINS([Event_Type], 'inappmessage') then 'iam' end
이제 집계를 위한 전처리는 완료되었습니다(세세한 전처리 과정은 생략됨)
이제 위에서 만들었던 차원을 가지고 집계를 합니다.
일자별, send_type, campaign/canvas, device_category 별 오픈, 클릭, 노출, delivery 데이터는 아래와 같이 집계되었습니다.
통합된 GA4 / MMP 데이터와 커런츠 데이터를 통합해야 되는 과정이 또 남았습니다.
어떻게 이 두 데이터를 엮어야 될까요?
조인키를 위에서 집계한 차원 데이터로 잡고 Full Outer Join으로 데이터를 조인합니다.
이유는 특정 날짜에 브레이즈 커런츠 데이터는 존재하는데 성과 데이터(GA4, MMP) 데이터가 존재하지 않는다면 매칭될 수 없으니 누락이 되어버립니다. 거꾸로 성과 데이터(GA4, MMP) 데이터가 존재하는데 브레이즈 커런츠 데이터가 존재하지 않을 경우 누락이 되어버리기 때문입니다.
광고 성과 데이터 전처리하는 예시를 통해 Full Outer JOIN 이 어떻게 데이터를 처리되는지 예시를 통해 잠깐 확인해 보겠습니다
2024년 1월 1일 twitter 채널의 e 캠페인에서 비용이 1000원 소진했습니다. 그런데 GA4, MMP 데이터에는 해당 광고 채널의 캠페인에서 전환이 아예 일어나질 않았습니다. 하지만 비용이 발생했기 때문에 이 데이터를 버릴 수는 없겠죠? 무조건 살려야 됩니다.
거꾸로 광고 데이터에서 비용은 발생하지 않았는데 Attribution Window로 인해 전환이 발생했습니다. 이것도 버릴 수 없겠죠?
이 두 데이터에서 LEFT JOIN 또는 RIGHT JOIN을 수행하게 되면 조인키에 대응하지 않은 데이터는 매칭이 안되어 누락이 되어 버립니다. 이를 방지하기 위해서 INNER, LEFT OUTER, RIGHT OUTER 조인 집합을 생성하는 FULL OUTER JOIN을 수행합니다.
결과를 보면 각 테이블의 모든 데이터들이 출력이 되는 걸 알 수 있습니다.
본론으로 돌아와서!
Full Outer Join을 수행하기 전에 앞서 GA4, MMP 데이터를 합친 후 우리는 CRM 데이터만 필요하기 때문에 CRM 데이터만 필터를 합니다.
이제 Braze Current 데이터와 성과 데이터(GA4, MMP)를 날짜, 유입소스명, 캠페인명을 조인키로 두고 Full Outer Join 을 수행합니다.(분석하고자 하는 차원데이터가 추가로 더 있다면 추가로 필요한 차원도 조인키로 활용하시면 됩니다.)
이와 같은 방식으로 Paid 성과 데이터를 전처리 할 때도 위와 같은 방법으로 수행하면 됩니다.
데이터를 전처리 할 때 중요한 건 분석하고자 하는 결과물을 먼저 그려본 뒤에 결과를 도출하기 위해서 각 테이블을 어떻게 만들어 갈 것인지 생각하면서 만들어가면 됩니다. 실제로 전처리하다 보면 자잘하게 처리해야 되는 부분이 상당히 많습니다.
특히 데이터를 통합하기 위해서는 무엇보다 네이밍 컨벤션이 가장 중요한 점은 강조하지 않을 수 없습니다.
데이터 수집까지 잘했는데 캠페인 네이밍 컨벤션이 서로 다르다?.. 데이터 통합은 불가능합니다..
네이밍 컨벤션은 말 그대로 명명 규칙입니다.
위에서 언급한 대로 우리가 데이터 통합을 위해 차원 데이터를 조인키로 활용한다고 했었는데 캠페인 차원이 MMP, GA4, Braze or 광고 데이터가 모두 다르면 안 되겠죠? 아래와 같이 통일을 시켜야만 데이터를 연결할 수 있습니다.
여기까지 마케팅 데이터 수집부터 전처리 과정까지 알아보았습니다.
다음 글에서는 이 데이터를 활용해서 시각화 하는 방법을 살펴보겠습니다.
August 21, 2024
루커 스튜디오(Looker Studio)는 구글에서 제공하는 강력한 데이터 시각화 도구입니다. 다양한 데이터 소스를 연결하여 직관적인 대시보드를 만들 수 있으며, 이를 통해 복잡한 데이터를 쉽게 이해할 수 있습니다. 특히, 마케팅, 영업, 운영 등 다양한 분야에서 유용하게 활용될 수 있습니다. 루커스튜디오가 궁금한 분들은 해당 글을 참고해주세요.
인터랙티브 퍼널 차트는 사용자 행동을 단계별로 분석하여 시각적으로 표현하는 방식입니다. 특히, 마케팅 퍼널 분석에 유용하며, 고객이 제품이나 서비스를 구매하기까지의 과정을 시각화하여 각 단계에서의 전환율을 파악할 수 있습니다.
퍼널 분석에는 두 가지 전환율 분석 방식이 존재합니다:
이 두 가지 방식 모두 데이터의 절대값(absolute) 형태와 비율(rate) 형태로 나눠서 분석할 수 있습니다. 이를 통해 어떤 단계에 문제가 있는지 비교하면서 파악할 수 있습니다.
퍼널 분석을 통해 마케팅 전략의 효과를 검토하고 개선할 수 있는 인사이트를 얻을 수 있습니다. 예를 들어, 특정 단계에서 이탈율이 높다면 해당 단계의 문제점을 찾아 해결하는 방식으로 퍼널의 전반적인 전환율을 개선할 수 있습니다.
루커 스튜디오 인터렉티브 퍼널 분석 차트 만들기 | Looker studio
인터랙티브 퍼널 리포트를 작성하는 단계는 크게 데이터 준비, 바 차트 생성, 차트에 인터랙티브 기능 추가로 나눌 수 있습니다.
먼저, 데이터 소스를 연결한 후 필요한 데이터를 정리합니다. 예시는 GA4 데모 데이터를 활용 하였습니다.
계산된 필드와 매개변수 설정이 필요합니다.
아래 이미지에 활용할 매개변수 2가지를 만들어봅시다.
Drop-off type
Value type
데이터 혼합을 이후에 활용할 예정입니다. 데이터 혼합에서 매개변수 사용을 위해서는 매개변수를 측정기준으로 아래와 같이 변경하는 작업이 필요합니다.
앞서 살펴봤던 매개변수의 계산된 필드 변환을 포함하여 3가지 측정기준을 만들어 줍니다.
Drop-off type dim
Value type dim
Funnel step order #
GA4의 전자상거래 5개 이벤트를 선택하고 해당 단계의 순서를 지정하는 이벤트를 만들어줍니다.
Looker Studio 코드 1
CASE
WHEN 이벤트 이름 = "add_to_cart" THEN 1
WHEN 이벤트 이름 = "add_shipping_info" THEN 2
WHEN 이벤트 이름 = "begin_checkout" THEN 3
WHEN 이벤트 이름 = "add_payment_info" THEN 4
WHEN 이벤트 이름 = "purchase" THEN 5
ELSE NULL
END
GA4 – Checkout steps
앞서 정의한 5개 외 나머지 이벤트는 Null로 처리 되었습니다. 해당 이벤트는 분석에 활용하지 않을 예정이므로 필터를 이용하여 제외 처리를 해줍니다. 해당 필터는 이후 단계에서 활용하도록 하겠습니다.
퍼널 분석을 위해선 직전단계와 다음 단계 사용자의 차이를 구해야합니다. 다만 루커스튜디오는 단일 소스로 해당 계산을 하기가 어렵기 때문에 데이터 혼합의 교차 조인을 활용하여 단계별 유저 차이를 구하는 식을 만들 수 있습니다.
데이터 준비가 완료되면, '차트 추가' 메뉴에서 바 차트를 선택합니다. 바 차트를 생성한 후, X축과 Y축에 표시할 데이터를 설정합니다.
3.4.1 설정 탭
Abs users
Looker Studio 코드 2
IF(
Values type dim = "Absolute values"
,
Total users
,
null
)
Abs exited users
Looker Studio 코드 3
IF(
Values type dim = "Absolute values"
,
IF
(
Drop-off type dim = 'Funnel drop-off'
,
IF(Ref Funnel step order = 1 AND Funnel step order != 1, (Ref Total users - Total users),null)
,
IF(Ref Funnel step order = Funnel step order - 1, (Ref Total users - Total users),null)
)
,
null
)
% active
Looker Studio 코드 4
IF(
Values type dim != "Absolute values"
,
IF
(
Drop-off type dim = 'Funnel drop-off'
,
CASE
WHEN Funnel step order = 1 THEN 1
WHEN Ref Funnel step order = 1 AND Funnel step order != 1 THEN (Total users ) / Ref Total users
ELSE NULL
END
,
CASE
WHEN Funnel step order = 1 THEN 1
WHEN Ref Funnel step order = Funnel step order - 1 THEN (Total users ) / Ref Total users
ELSE NULL
END
)
,
null
)
% drop off
Looker Studio 코드 5
IF(
Values type dim != "Absolute values"
,
IF
(
Drop-off type dim = 'Funnel drop-off'
,
IF(Ref Funnel step order = 1 AND Funnel step order != 1, (Ref Total users - Total users)/Ref Total users,null)
,
IF(Ref Funnel step order = Funnel step order - 1, (Ref Total users - Total users)/Ref Total users,null)
)
,
null
)
3.4.2 스타일 탭
인터랙티브 퍼널 리포트는 다양한 마케팅 시나리오에서 유용하게 활용될 수 있습니다. 예를 들어, 고객의 구매 여정을 단계별로 분석하여 각 단계에서 발생하는 이탈율을 파악하고, 이를 개선하기 위한 전략을 세울 수 있습니다.
또한, 특정 마케팅 캠페인의 성과를 분석할 때도 퍼널 리포트를 사용하면 각 채널별로 고객의 반응을 비교할 수 있습니다. 이를 통해 어떤 채널이 가장 효과적인지 파악하고, 마케팅 예산을 효율적으로 분배할 수 있습니다.