August 23, 2024
디지털 시대의 급속한 발전과 함께 마케팅 환경이 빠르게 변화하고 있습니다. 다양한 채널을 통한 고객 접점이 증가하면서 기업들은 복잡해진 고객 관계 관리(CRM)에 직면하고 있습니다. 이러한 상황에서 CRM 대시보드의 중요성이 더욱 부각되고 있습니다.
CRM 대시보드는 여러 채널에서 수집된 CRM 캠페인 데이터를 통합하여 분석하고, 현황을 한눈에 파악할 수 있게 해주는 강력한 방법입니다. 다양한 CRM 채널로 인해 단일 기준으로 분석하기 어려운 데이터들을 대시보드를 통해 효과적으로 통합하고 시각화함으로써, 마케터들은 보다 신속하고 정확한 CRM 마케팅 의사결정을 내릴 수 있게 됩니다.
이러한 CRM 대시보드의 활용은 단순히 데이터를 보여주는 것에 그치지 않습니다. 실시간으로 캠페인 성과를 모니터링하고, 고객 행동 패턴을 분석하며, 각 채널별 효과를 비교할 수 있게 해줍니다. 이를 통해 기업은 더욱 효율적인 마케팅 전략을 수립하고, 고객 경험을 개선하며, 궁극적으로는 ROI를 향상시킬 수 있습니다.
본 글에서는 범용적으로 활용가능한 CRM 대시보드를 템플릿을 제공합니다.
Looker Studio CRM 캠페인 대시보드 템플릿은 마케팅 캠페인의 성과를 실시간으로 모니터링하고, 데이터를 시각화하여 분석할 수 있도록 돕는 강력한 도구입니다. 이 템플릿을 통해 효과적인 의사결정을 지원하고, 전략을 최적화할 수 있습니다.
Looker Studio CRM 캠페인 대시보드 템플릿은 캠페인의 실시간 성과 모니터링, 데이터 시각화, 마케팅 전략 최적화를 목적으로 활용됩니다. 이를 통해 효과적인 의사결정과 전략적 개선이 가능합니다.
실시간 대시보드를 통해 데이터를 업데이트하고, 다양한 필터 기능을 사용하여 원하는 데이터를 정확히 추출할 수 있습니다. 맞춤형 리포트를 생성하여 필요에 따라 커스터마이즈된 분석이 가능합니다.
마케팅 팀, 경영진, 데이터 분석가 등 다양한 사용자들이 이 템플릿을 활용하여 캠페인 성과를 모니터링하고 분석할 수 있습니다.
1. 주기적인 업데이트
2. 필터 활용
3. 성과 지표 설정
4. 데이터 비교
5. 팀과 공유
템플릿은 마케팅 캠페인의 성과를 종합적으로 관리하고 분석하는 데 유용하며, 데이터를 기반으로 한 전략적 의사결정을 지원합니다.
August 21, 2024
지난 편에서는 각 솔루션별 데이터 수집 방법(바로가기)에 대해서 알아보았습니다.
1. Third Party 데이터 수집 자동화
2. 수집된 데이터 전처리하기
3. 시각화하기
이번에는 수집된 데이터를 활용하여 어떻게 전처리 해야 되는지 알아보겠습니다.
각 데이터 셋들은 분석하려는 차원(dimension)을 기준으로 집계(group by)를 통해서 동일한 형태로 전처리한 후 조인 연산을 통해 데이터를 통합하는 과정이라고 생각하시면 됩니다.
마케팅 성과를 분석하기 위해서 필요한 데이터 다음과 같습니다.
Dimension : 날짜(일별), 유입소스(GA4 = utm_source, Appsflyer = Media_source), 캠페인
Metric : 구매수, 매출, 인스톨 수
GA4가 웹, 앱 모두 트래킹을 할 수 있지만 WEB은 GA4, APP은 MMP로 성과를 합쳐서 보실 겁니다.
GA4, Firebase는 앱과 웹 내 고객 행동 분석에 주로 쓰이는 툴이고 MMP 는 광고 성과를 측정하는 툴이니깐요
그러면 이렇게 됩니다.
<GA4 데이터 집계> - WEB
Dimension : 날짜(일별), 세션 소스, 캠페인
Metric : 구매수, 매출
<MMP 데이터 집계> - APP
Dimension : 날짜(일별), Media_source, 캠페인
Metric : 구매수, 매출, 인스톨 수
집계된 두개의 테이블을 UNION 다시 한번 집계를 해줍니다.
이렇게 하면 집계된 웹앱 데이터 통합이 되었습니다. (MMP 데이터 전처리 과정은 생략)
Dimension : 날짜(일별), Media_source, 캠페인
Metric : 구매수, 매출, 인스톨 수
브레이즈 커런츠(braze currents)데이터는 유저 인게이지먼트 데이터입니다.
여기에는 유저별로 어떻게 우리 서비스로 참여를 하고있는지를 기록한 데이터들이 기록되어 있으니 메시지 발송 수단별로 노출, 클릭 성과들이 들어있습니다. 하지만 우리는 성과(구매) 판단은 MMP, GA4로 해야 하므로 서로 다른 데이터들을 어떻게 통합해서 볼지를 알아보겠습니다.
커런츠 데이터는 아래와 같이 구성이 되어있습니다.
위와 같은 데이터를 일자, 메세지 발송 타입, 캠페인 or 캔버스별 발송수, 노출수, 클릭수 데이터를 집계를 하기 위해서는 유니크한 ID를 나타내는 차원 데이터를 만들어 줘야 합니다.
동일한 유저라도 캠페인, 캔버스, 베리에이션 등 다양한 형태로 타겟이 될 수 있으므로, 아래와 같이 유니크한 차원 데이터를 만들기 위해 새로운 아이디를 생성합니다. (해당 아이디는 발송 타입별로 카운트하기 위해 활용됩니다.)
차원의 이름은 원하시는대로 명명하시면 되고 저는 user_id_dispatch_id 이렇게 명명하였습니다.
-- 태블로 계산식
IFNULL([User Id],'') + '-' +
IFNULL([Campaign Id],'') + '-' +
IFNULL([Message Variation Id],'') + '-' +
IFNULL([Canvas Id],'') + '-' +
IFNULL([Canvas Variation Id],'') + '-' +
IFNULL([Canvas Step Message Variation Id],'') + '-' +
IFNULL([Dispatch Id],'')
다음으로 캠페인 단위로 성과를 집계할 예정이기 때문에 캠페인 차원을 만들어줘야 합니다.
왜냐하면 브레이즈에는 캠페인과 캠버스로 나뉘는데 campaign_name 값이 존재하면 canvas_name 이 빈값이고 거꾸로 canvas_name 값이 존재하면 campaign_name이 빈값이기 때문입니다.
-- 태블로 계산식
IFNULL([Campaign Name],[Canvas Name])
{send_type}_click 이런 식으로 차원 이름을 명명하고 아래와 같은 태블로 계산식으로 차원을 만들어줍니다.
이렇게 되면 email_click, push_click, in_app_message_click 이벤트별로 ID(user_id_dispatch_id)를 생성됩니다.
-- 태블로 계산식
{ FIXED [user_id_dispatch_id],[Event Type] : COUNTD(IF CONTAINS([Event Type], 'inappmessage_click') THEN [user_id_dispatch_id] END)}
최초에 S3에 적재된 currents 데이터(avro 파일)를 DW에 적재할 때 파일별 Event 구분을 위해 Event_Type 칼럼을 생성하였습니다. (이전 글을 참고해 주세요)
['users.messages.email.Open.avro',
'users.messages.email.Click.avro',
'users.messages.pushnotification.Send.avro',
'users.messages.inappmessage.Click.avro',
'users.messages.email.Delivery.avro',
'users.messages.pushnotification.Open.avro',
'users.messages.inappmessage.Impression.avro']
-- 태블로 계산식
IF CONTAINS([Event_Type], 'email') then 'email'
elseif CONTAINS([Event_Type], 'push') then 'push'
elseif CONTAINS([Event_Type], 'inappmessage') then 'iam' end
이제 집계를 위한 전처리는 완료되었습니다(세세한 전처리 과정은 생략됨)
이제 위에서 만들었던 차원을 가지고 집계를 합니다.
일자별, send_type, campaign/canvas, device_category 별 오픈, 클릭, 노출, delivery 데이터는 아래와 같이 집계되었습니다.
통합된 GA4 / MMP 데이터와 커런츠 데이터를 통합해야 되는 과정이 또 남았습니다.
어떻게 이 두 데이터를 엮어야 될까요?
조인키를 위에서 집계한 차원 데이터로 잡고 Full Outer Join으로 데이터를 조인합니다.
이유는 특정 날짜에 브레이즈 커런츠 데이터는 존재하는데 성과 데이터(GA4, MMP) 데이터가 존재하지 않는다면 매칭될 수 없으니 누락이 되어버립니다. 거꾸로 성과 데이터(GA4, MMP) 데이터가 존재하는데 브레이즈 커런츠 데이터가 존재하지 않을 경우 누락이 되어버리기 때문입니다.
광고 성과 데이터 전처리하는 예시를 통해 Full Outer JOIN 이 어떻게 데이터를 처리되는지 예시를 통해 잠깐 확인해 보겠습니다
2024년 1월 1일 twitter 채널의 e 캠페인에서 비용이 1000원 소진했습니다. 그런데 GA4, MMP 데이터에는 해당 광고 채널의 캠페인에서 전환이 아예 일어나질 않았습니다. 하지만 비용이 발생했기 때문에 이 데이터를 버릴 수는 없겠죠? 무조건 살려야 됩니다.
거꾸로 광고 데이터에서 비용은 발생하지 않았는데 Attribution Window로 인해 전환이 발생했습니다. 이것도 버릴 수 없겠죠?
이 두 데이터에서 LEFT JOIN 또는 RIGHT JOIN을 수행하게 되면 조인키에 대응하지 않은 데이터는 매칭이 안되어 누락이 되어 버립니다. 이를 방지하기 위해서 INNER, LEFT OUTER, RIGHT OUTER 조인 집합을 생성하는 FULL OUTER JOIN을 수행합니다.
결과를 보면 각 테이블의 모든 데이터들이 출력이 되는 걸 알 수 있습니다.
본론으로 돌아와서!
Full Outer Join을 수행하기 전에 앞서 GA4, MMP 데이터를 합친 후 우리는 CRM 데이터만 필요하기 때문에 CRM 데이터만 필터를 합니다.
이제 Braze Current 데이터와 성과 데이터(GA4, MMP)를 날짜, 유입소스명, 캠페인명을 조인키로 두고 Full Outer Join 을 수행합니다.(분석하고자 하는 차원데이터가 추가로 더 있다면 추가로 필요한 차원도 조인키로 활용하시면 됩니다.)
이와 같은 방식으로 Paid 성과 데이터를 전처리 할 때도 위와 같은 방법으로 수행하면 됩니다.
데이터를 전처리 할 때 중요한 건 분석하고자 하는 결과물을 먼저 그려본 뒤에 결과를 도출하기 위해서 각 테이블을 어떻게 만들어 갈 것인지 생각하면서 만들어가면 됩니다. 실제로 전처리하다 보면 자잘하게 처리해야 되는 부분이 상당히 많습니다.
특히 데이터를 통합하기 위해서는 무엇보다 네이밍 컨벤션이 가장 중요한 점은 강조하지 않을 수 없습니다.
데이터 수집까지 잘했는데 캠페인 네이밍 컨벤션이 서로 다르다?.. 데이터 통합은 불가능합니다..
네이밍 컨벤션은 말 그대로 명명 규칙입니다.
위에서 언급한 대로 우리가 데이터 통합을 위해 차원 데이터를 조인키로 활용한다고 했었는데 캠페인 차원이 MMP, GA4, Braze or 광고 데이터가 모두 다르면 안 되겠죠? 아래와 같이 통일을 시켜야만 데이터를 연결할 수 있습니다.
여기까지 마케팅 데이터 수집부터 전처리 과정까지 알아보았습니다.
다음 글에서는 이 데이터를 활용해서 시각화 하는 방법을 살펴보겠습니다.
August 21, 2024
루커 스튜디오(Looker Studio)는 구글에서 제공하는 강력한 데이터 시각화 도구입니다. 다양한 데이터 소스를 연결하여 직관적인 대시보드를 만들 수 있으며, 이를 통해 복잡한 데이터를 쉽게 이해할 수 있습니다. 특히, 마케팅, 영업, 운영 등 다양한 분야에서 유용하게 활용될 수 있습니다. 루커스튜디오가 궁금한 분들은 해당 글을 참고해주세요.
인터랙티브 퍼널 차트는 사용자 행동을 단계별로 분석하여 시각적으로 표현하는 방식입니다. 특히, 마케팅 퍼널 분석에 유용하며, 고객이 제품이나 서비스를 구매하기까지의 과정을 시각화하여 각 단계에서의 전환율을 파악할 수 있습니다.
퍼널 분석에는 두 가지 전환율 분석 방식이 존재합니다:
이 두 가지 방식 모두 데이터의 절대값(absolute) 형태와 비율(rate) 형태로 나눠서 분석할 수 있습니다. 이를 통해 어떤 단계에 문제가 있는지 비교하면서 파악할 수 있습니다.
퍼널 분석을 통해 마케팅 전략의 효과를 검토하고 개선할 수 있는 인사이트를 얻을 수 있습니다. 예를 들어, 특정 단계에서 이탈율이 높다면 해당 단계의 문제점을 찾아 해결하는 방식으로 퍼널의 전반적인 전환율을 개선할 수 있습니다.
루커 스튜디오 인터렉티브 퍼널 분석 차트 만들기 | Looker studio
인터랙티브 퍼널 리포트를 작성하는 단계는 크게 데이터 준비, 바 차트 생성, 차트에 인터랙티브 기능 추가로 나눌 수 있습니다.
먼저, 데이터 소스를 연결한 후 필요한 데이터를 정리합니다. 예시는 GA4 데모 데이터를 활용 하였습니다.
계산된 필드와 매개변수 설정이 필요합니다.
아래 이미지에 활용할 매개변수 2가지를 만들어봅시다.
Drop-off type
Value type
데이터 혼합을 이후에 활용할 예정입니다. 데이터 혼합에서 매개변수 사용을 위해서는 매개변수를 측정기준으로 아래와 같이 변경하는 작업이 필요합니다.
앞서 살펴봤던 매개변수의 계산된 필드 변환을 포함하여 3가지 측정기준을 만들어 줍니다.
Drop-off type dim
Value type dim
Funnel step order #
GA4의 전자상거래 5개 이벤트를 선택하고 해당 단계의 순서를 지정하는 이벤트를 만들어줍니다.
Looker Studio 코드 1
CASE
WHEN 이벤트 이름 = "add_to_cart" THEN 1
WHEN 이벤트 이름 = "add_shipping_info" THEN 2
WHEN 이벤트 이름 = "begin_checkout" THEN 3
WHEN 이벤트 이름 = "add_payment_info" THEN 4
WHEN 이벤트 이름 = "purchase" THEN 5
ELSE NULL
END
GA4 – Checkout steps
앞서 정의한 5개 외 나머지 이벤트는 Null로 처리 되었습니다. 해당 이벤트는 분석에 활용하지 않을 예정이므로 필터를 이용하여 제외 처리를 해줍니다. 해당 필터는 이후 단계에서 활용하도록 하겠습니다.
퍼널 분석을 위해선 직전단계와 다음 단계 사용자의 차이를 구해야합니다. 다만 루커스튜디오는 단일 소스로 해당 계산을 하기가 어렵기 때문에 데이터 혼합의 교차 조인을 활용하여 단계별 유저 차이를 구하는 식을 만들 수 있습니다.
데이터 준비가 완료되면, '차트 추가' 메뉴에서 바 차트를 선택합니다. 바 차트를 생성한 후, X축과 Y축에 표시할 데이터를 설정합니다.
3.4.1 설정 탭
Abs users
Looker Studio 코드 2
IF(
Values type dim = "Absolute values"
,
Total users
,
null
)
Abs exited users
Looker Studio 코드 3
IF(
Values type dim = "Absolute values"
,
IF
(
Drop-off type dim = 'Funnel drop-off'
,
IF(Ref Funnel step order = 1 AND Funnel step order != 1, (Ref Total users - Total users),null)
,
IF(Ref Funnel step order = Funnel step order - 1, (Ref Total users - Total users),null)
)
,
null
)
% active
Looker Studio 코드 4
IF(
Values type dim != "Absolute values"
,
IF
(
Drop-off type dim = 'Funnel drop-off'
,
CASE
WHEN Funnel step order = 1 THEN 1
WHEN Ref Funnel step order = 1 AND Funnel step order != 1 THEN (Total users ) / Ref Total users
ELSE NULL
END
,
CASE
WHEN Funnel step order = 1 THEN 1
WHEN Ref Funnel step order = Funnel step order - 1 THEN (Total users ) / Ref Total users
ELSE NULL
END
)
,
null
)
% drop off
Looker Studio 코드 5
IF(
Values type dim != "Absolute values"
,
IF
(
Drop-off type dim = 'Funnel drop-off'
,
IF(Ref Funnel step order = 1 AND Funnel step order != 1, (Ref Total users - Total users)/Ref Total users,null)
,
IF(Ref Funnel step order = Funnel step order - 1, (Ref Total users - Total users)/Ref Total users,null)
)
,
null
)
3.4.2 스타일 탭
인터랙티브 퍼널 리포트는 다양한 마케팅 시나리오에서 유용하게 활용될 수 있습니다. 예를 들어, 고객의 구매 여정을 단계별로 분석하여 각 단계에서 발생하는 이탈율을 파악하고, 이를 개선하기 위한 전략을 세울 수 있습니다.
또한, 특정 마케팅 캠페인의 성과를 분석할 때도 퍼널 리포트를 사용하면 각 채널별로 고객의 반응을 비교할 수 있습니다. 이를 통해 어떤 채널이 가장 효과적인지 파악하고, 마케팅 예산을 효율적으로 분배할 수 있습니다.
August 14, 2024
[Martinee X Braze]
Braze Personalization Master Class Advanced는 Braze 도입을 고민하고 계시거나 도입 후 잘 활용하고 싶으신 고객사를 대상으로 Braze 개인화 기능인 Personalization 활용 노하우를 공유하는 교육 세미나입니다.
브레이즈 개인화 기능, 여러분도 잘 활용할 수 있습니다.
“Braze 도입은 했는데.. 어디서부터 어떻게 해야 하지?”
“Braze 개인화, 더 깊고 세부적으로 사용하려면 개발이 필요하지는 않을까?”
Braze 개인화 기능, 여러분도 개발없이 전문가처럼 매우 세부적으로 활용할 수 있습니다.
이번 세션에서는 Braze 개인화 단계 중 Liquid와 Connected Contents를 활용하여 심화 켐페인 실습을 진행하여 충분히 실무에 활용할 수 있도록 하였으며,
성공적인 CRM 캠페인을 위한 다양한 CRM 캠페인 사례들을 함께 확인해봅니다.
마티니는 버거킹, 오늘의집, 무신사, KFC, 쏘카, 알라미(딜라이트룸), 발란, 칼하트, LG전자, 넷마블, 크래프톤, 머스트잇, 동원F&B, 이랜드폴더, 네오위즈, IBK기업은행, 밀리의서재 이외에도 다양한 고객사와 여정을 함께하고 있습니다.
실무에 바로 적용할 수 있는 활용 노하우, 마티니와 함께한 고객사들이 만족하는 이유입니다.
지난 브레이즈 부트캠프에 참여해주신 분들의 생생한 후기를 확인해보세요.
“ 실제 사용 사례에 대해 많이 들을 수 있어서 좋았고 브레이즈 시현 과정을 볼 수 있어서 좋았습니다. “
“ 라이브 데모를 통해 어떻게 활용하는지 상세하게 알 수 있었습니다. “
“CRM 고도화에 Braze가 어떻게 기여할 수 있을지에 대한 궁금증을 해소할 수 있었습니다. “
“Braze 개인화를 위한 Liquid의 개념과 구조 설명이 있어서 이해하기 좋았습니다. “
Braze Personalization Master Class | 이건희 연사, Martinee CRM Team Lead
Braze Automation Master Class
Braze Data Analytics Master Class
2024년 8월 26일 월요일 오후 7시 - 9시
서초구 서초대로 38길 12 마제스타시티 타워2, 12층 마티니 오피스
📢 혜택 1. Martinee CRM 커뮤니티 초대
📢 혜택 2. 마티니 CRM POC 추첨 무료 1회 제공
CRM 캠페인의 성과와 비즈니스 개선을 마티니와 함께 이뤄보세요!
August 6, 2024
행사명 : Maritnee 2024 Recap 행사
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 8월 20일 화요일 오후 3시
대상:
MGS 2024에서 진행했던 마티니 & AB180 & Snowflake의 세션을 한 번에 확인해보세요.
CRM과 그로스 마케팅을 바탕으로 마티니가 직접 경험하고 이끌었던 실제 성공 사례, AB180의 마케터를 위한 SKAN 활용법과 Snowflake의 마케팅 데이터 클라우드로 비즈니스 성장을 가속화하는 방법을 공유합니다.
MGS 2024 현장에서 공유해드린 마케팅 인사이트와 성공 사례에 대해 확인할 수 있는 기회를 놓치지 마세요!
15:00 - 15:15 Martinee Marketing Intelligence 2024 | 이선규 Martinee CEO
15:15 - 15:45 버거킹도 Amplitude를 쓴다고? 어떻게 쓰는데? | 이재철 Martinee Growth Team Lead
15:45 - 16:15 "우리 잘하고 있는건가?": CRM 마케터들이 궁금해하는 고민과 해결방안 | 이건희 Martinee CRM Team Lead
16:15 - 16:25 Break Time
16:25 - 16:55 iOS 마케터를 위한 SKAN 100% 활용하기 | 한예선 Airbridge & AB180 Business Development Manager
16:55 - 17:25 감'이 아닌 '데이터'로 : Snowflake로 데이터 기반 인사이트 발견하기 | 이수현 Snowflake Tech Evangelist
17:25 - 18:00 Networking & QnA
- 자리가 한정되어 있어 별도로 선정 안내를 드릴 예정입니다.
- 주차권 제공 가능하며 리셉션 데스크 문의바랍니다.
- 참석자분들에게 간단한 음식이 제공됩니다.
August 2, 2024
7월 31일, 코엑스 그랜드볼룸 & 아셈볼룸에서 AB180이 주최한 국내 최대 마케팅 컨퍼런스 MGS 2024가 개최되었습니다.
23년에 이어 마티니가 참여한 MGS 2024에서는 CRM 마케팅에서의 고민과 마티니가 경험하며 체득한 해결방안과 인사이트와 더불어 버거킹의 Amplitude 도입부터 세부적인 단계별 과정을 소개드리고 쏘카와 함께 Braze를 활용한 크로스 셀링 전략과 초개인화 CRM 마케팅 성공 사례를 3개의 발표 세션을 통해 공유하는 자리였습니다.
MGS 2024에서 진행했던 마티니 세션들을 살펴볼까요?
마티니 CRM팀은 KFC, 이랜드 폴더, 콘텐츠웨이브, 뮤직카우, 레브잇, 발란, 딜라이트룸 알라미, 오늘의집, 버거킹 등 무수히 많은 국내 유명 기업과 함께 협업하며 Braze를 200% 활용하고 CRM 인사이트를 확장시켜 왔는데요.
지금까지 수많은 CRM 캠페인을 실행하고 경험하고 겪었던 CRM 마케팅에서의 고민들과 그에 따른 마티니만의 해결방안을 CRM팀 리더 건희님이 발표 세션에서 공유해드렸습니다.
개인화
개인화로 어떤 걸 할 수 있어요?
➡️ 개인화의 3단계 Level과 함께 마티니가 실제 적용해본 CRM 사례를 바탕으로 개인화로 가능한 부분을 설명해드렸습니다.
분석
CRM 성과 어떻게 분석하는 것이 좋을까요?
➡️ 증분 분석과 PA 솔루션 활용으로 오로지 마케팅 활동이 만들어준 ‘진짜’ 성과를 찾는 방법을 알려드렸습니다.
연계활용
PA나 MMP랑 연계하면 뭘 할 수 있나요?
➡️ 각 솔루션의 역할과 CRM 솔루션과의 연동 케이스들을 기반으로 PA 및 MMP 솔루션과 연동 활용 시 가능한 점들을 설명드렸습니다.
테스트
모수가 너무 적은데 의미 있을까요?
➡️ 모수 크기 계산과 카이 제곱 검정식을 바탕으로 적절한 모수와 전환율을 확인하는 방법을 공유해드렸습니다.
도입
Braze 도입, 어느 정도 걸려요?
➡️ 도입 시작부터 첫 캠페인 런칭 기준 도입기간과 컨설팅 유무에 따른 비교을 통해 소요 기간을 알려드렸습니다.
기술적 구현
개발 지원을 못 받아서 못 하는게 많아요.
➡️ 개발 의존도를 낮춰주는 Braze의 3가지 강력한 주요 기능을 소개해드리며 개발 지원없이 가능한 CRM을 사례를 통해 설명해드렸습니다.
마티니는 버거킹의 Amplitude 도입부터 사용, 그리고 Braze 연계 활용까지 함께 하였는데요.
온오프라인이 모두 중요한 버거킹의 경우 디지털 플랫폼 활용도가 높기에 Amplitude 도입을 5단계의 체계적인 절차를 바탕으로 진행하였고 그에 따른 각 단계별 키 포인트들을 공유해드렸습니다.
1. Planning
5. Go-Live
활용 단계에서는 구매 횟수별 고객 특성과 구매 시간대별 고객 특성 2가지로 나누어 쿠폰 사용 패턴을 분석한 과정과 AARRR 지표 설계에 따른 세부 기준, 유저 코호트와 같은 지표 분석 과정, 가설 도출부터 A/B 테스트 설계까지 버거킹과 함께한 상세한 내용들을 설명해드렸습니다.
고객 행동 중 구매 시간대에 따라 고객의 특징이 다르게 나타난다는 점을 확인할 수 있었고 얼마나 차이가 있는지 Amplitudfe 코호트 차트 기능을 활용하여 분석하였습니다.
분석한 내용을 바탕으로 Braze에서 약 48개의 코호트 그룹을 나누어 최적 시간대와 메시지 테스트를 진행하여 결과적으로 성과를 개선시킬 수 있었습니다.
쏘카는 기존 카셰어링에서 작년부터 숙박 서비스까지 비즈니스를 확장시키며 마티니와 함께 Braze를 잘 활용하여 체계적인 캠페인 관리 시스템을 구축해왔습니다.
해당 세션에서는 우천 시 서비스 이용이 활발해지지 않는 서비스 특성을 고려한 쏘카만의 캠페인 사례와 숙박 서비스로 범위를 확장하며 각 타겟의 반응을 확인하며 메시지 발송 대비 전환률을 상승시킨 전략들을 확인할 수 있었습니다.
CRM 마케팅에서 개발 지원없이 섬세한 캠페인 전략을 구사하기가 어려울 수 있는데요. 쏘카가 마티니와 함께 개발자 도움 없이 Braze Connected Content 기능을 활용하여 초개인화 메시지를 구현했던 과정도 상세하게 설명해드렸습니다. 기술 구현이 필요한 항목을 점검하고 오픈데이터와 Braze Liquid 및 Connected Content 기능을 활용한 케이스를 공유하며 어떻게 크로스셀링 전략을 성공적으로 이끌었는지 공유해드린 시간이었습니다.
놓치면 후회하는 마티니와 쏘카의 CRM 협업 사례, 8월 13일 Recap 행사에서 확인하실 수 있습니다.
이번 MGS 2024에서는 마티니가 부스를 운영하여 풀스택 마케팅 도입 컨설팅 서비스에 대해 상담 서비스를 제공해드리고 보다 자세하게 설명드릴 수 있도록 하였습니다.
캡슐 뽑기를 통해서 마티니 스티커와 에코백 굿즈를 나눠드렸습니다.
마티니는 세 가지 분야의 전문가들이 모여 유기적으로 협업하며 다양한 문제를 해결하고 있습니다.
버거킹과 쏘카 사례에서 보여드린 것처럼 데이터·프로덕트 분석, KPI 대시보드 설계와 제작, 데이터 파이프라인 활용, CRM 택소노미(Taxonomy) 및 프로모션 설계, MMP 설치와 점검, 퍼포먼스 마케팅 미디어 믹스까지, 각 분야의 전문가들이 모여있는 마티니와 함께 비즈니스 성공을 실현해보세요.
July 29, 2024
쿠키(Cookie)란 사용자가 웹사이트를 방문할 때마다 웹 브라우저를 통해 인터넷 사용자의 컴퓨터나 다른 기기에 설치되는 기록 정보 파일을 뜻합니다. 이는 퍼포먼스 마케팅의 필수도구로써 마케팅 활동의 세부적인 추적, 개인화 및 최적화를 가능하게 했습니다.
퍼포먼스 마케팅에서 구체적인 쿠키의 기능은 다음과 같습니다.
1. 사용자 행동 추적
2. 개인화
3. 리타겟팅
4. A/B 테스트 및 최적화
하지만 데이터 보호 규정을 시작으로 데이터 보호를 강화하기 위한 전세계의 흐름이 있었고, 애플을 시작으로 구글 폭스 등 많은 웹 브라우저 회사들이 쿠키 제공 중단을 선언헀습니다.
쿠기 제공이 중단된다면, 기존의 쿠키를 이용해 진행하던 기능들을 더 이상 진행할 수 없게 됩니다. 그 결과 각 매체의 효율이 감소하고 신규 고객을 획득하는데 필요한 비용이 증가할 것으로 예상됩니다. 구글이 쿠키의 지원 중단 시점을 2025년으로 연기했다고는 하지만, 마케터들은 선택이 아닌 필수로 기존 광고 방식에 변화가 필요한 상황입니다.
쿠키 리스 상황에서 발생하는 여러 문제들에 대비하기 위해 진행할 수 있는 여러 방법들이 있습니다. 그 중 고객사에서는 현 상황에서 다양한 매체를 활용하기보다 최고의 효율을 낼 수 있는 매체를 선별해서 효율이 좋은 매체에 집중하고자 합니다. 이를 위해 각 광고매체의 성과를 실시간으로 모니터링할 수 있는 대시보드가 필요했습니다.
태블로를 통해 다양한 광고채널에 분산되어 모니터링이 어려웠던 지표들을 태블로를 통해 하나의 대시보드에서 관리함으로써 어느 채널의 어떤 광고가 효율이 좋은지를 빠르게 파악하고, 이를 통해 어떤 채널에 더 예산을 증가하거나 감소해야 할지에 대한 의사결정을 하는데 활용할 수 있습니다.
대시보드를 제작하기 위한 과정은 크게 환경점검, 데이터 수집, 데이터 저장, 데이터 시각화의 4단계로 구분할 수 있습니다.
첫 번째 환경 점검 단계는 대시보드 구축을 위한 대시보드 기획단계입니다. 이 단계에서는 데이터의 출처를 정의하고, 데이터 소스부터 시각화툴인 태블로까지 이어지는 데이터 파이프라인을 그립니다. 최종적으로 대시보드에서 어떤 데이터를 대시보드에 구현하고, 이를 어떤 방식으로 시각화할지에 대한 대시보드 기획단계라고 할 수 있습니다.
해당 광고성과 대시보드를 구현하기 위해서는 광고채널로부터 나오는 광고데이터를 데이터 소스로 정의하고, 이를 통합하는 과정이 필요합니다. 이를 위한 첫 번째 단계로 Meta, Google Ads등 여러 광고 채널에서 나온 데이터를 ETL툴인 Funnel io에서 통합합니다. 이후 MMP인 에어브릿지의 데이터를 통합해 이를 하나의 구글 스프레드시트 적재합니다. 최종적으로 태블로를 통해 시각화하는 방식으로 데이터 파이프라인을 구현했습니다.
해당 스텝으로 데이터 파이프라인을 구현했을 때의 장점은 어디서부터 데이터가 들어오게 되고, 문제가 발생했을 때 문제 발생원인을 직관적으로 확인가능하다는 점입니다.
두 번째 데이터 수집 단계는 실질적으로 필요한 데이터를 정의하는 단계입니다.
UTM 및 parameter를 기반한 광고성과 추적을 위한 계층 구조인 네이밍 컨벤션(Naming Convention)을 정의하고 이를 통해 광고의 위계질서를 설정합니다. 해당 데이터를 통해 광고성과 데이터 정의하고 수집할 수 있습니다.
네이밍 컨벤션(Naming Convention) 정의를 완료했다면, 이를 토대로 데이터 스키마를 작성해야 합니다. 데이터 스키마란 데이터베이스의 구조와 제약조건에 관해 기술한 것을 뜻합니다. 데이터 이름 및 형태(ex. 숫자/문자)에 대해 정의함으로써 향후 데이터 스키마 하나만 확인해도 어떤 데이터 형태인지 파악할 수 있도록 합니다.
세 번째 데이터 저장 단계는 네이밍 컨벤션(Naming Convention)과 데이터 스키마를 통해 정의한 데이터를 저장하는 단계입니다.
광고성과 확인 시, 데이터의 정확성을 확보하고, 다양한 광고채널의 기여도를 정확하게 측정하기 위해 미디어 데이터 뿐만 아니라 MMP 데이터를 함께 확인해야 합니다. 이를 위해 미디어(메타, 구글애즈,..)와 MMP의 소스를 조인하는 과정이 필요합니다. 이를 위해 키값을 정의하고, 해당 키값을 기준으로 데이터를 조인합니다.
마지막 데이터 시각화 단계는 정의된 데이터를 바탕으로 대시보드를 구현하는 단계입니다.
대시보드 구현에 앞서 퍼포먼스마케터들과 협의를 진행합니다. 실제 최종 대시보드를 사용할 퍼포먼스마케터들과의 논의를 통해 대시보드의 형태 및 기능을 구체화할 수 있습니다.
마지막으로 확정된 기획안을 토대로 태블로를 통해 최종 대시보드를 구현하면 대시보드 제작과정이 마무리됩니다.
July 19, 2024
KPI 대시보드 템플릿을 활용하여 비즈니스 주요 지표를 확인하며 데이터 기반 의사결정에 활용할 수 있습니다. 매출, 이익, 구매수 등 특히 지역별 구매 관점의 분석을 통해 실행 가능한 인사이트를 제공합니다.
1. 스프레드시트 사본 만들기
2. 루커스튜디오 사본 만들기 클릭
3. 리소스 → 추가된 데이터 소스 관리 클릭
4. 작업 → 수정 클릭
5. 루커스튜디오와 스프레드시트 연동 승인 진행
6. 앞서 사본을 만들었던 파일 찾아서 연결
7. 데이터 새로고침하면 데이터 확인이 됩니다.
July 18, 2024
프로모션 분석은 마케팅 캠페인의 일환으로 진행된 다양한 프로모션 활동들의 효과를 평가하고 측정하는 과정입니다. 이 과정을 통해 기업은 프로모션 활동이 소비자의 구매 결정, 브랜드 인식, 시장 점유율 등에 미치는 영향을 분석할 수 있습니다. 프로모션 분석을 위해 판매 데이터, 소비자 행동 데이터, 온라인 트래픽 데이터 등 다양한 데이터 소스를 활용할 수 있습니다.
프로모션 분석은 기업이 자원을 효율적으로 배분하고, 마케팅 목표를 달성하기 위해 필수적인 과정입니다. 이를 통해 기업은 다음과 같은 이점을 얻을 수 있습니다.
개별 프로모션 분석과 통합 프로모션 분석을 함께 수행함으로써, 보다 정교하고 효과적인 마케팅 전략을 개발할 수 있으며, 이는 최종적으로 기업의 성장과 수익성 향상에 기여하게 됩니다.
1. 전체적인 마케팅 전략의 효율성 평가
개별 프로모션 분석을 통해 특정 프로모션의 성공 여부를 파악할 수 있지만, 통합 프로모션 분석을 함께 수행하면 여러 프로모션 간의 상호작용과 그 영향을 이해할 수 있습니다. 이는 전체 마케팅 전략의 효율성을 평가하는 데 중요합니다.
2. 다채널 프로모션 전략의 최적화
현대 마케팅은 다양한 채널을 통해 이루어집니다. 개별 프로모션 분석과 통합 분석을 병행함으로써, 각 채널의 성과를 정확히 파악하고, 채널 간 시너지를 극대화하는 전략을 수립할 수 있습니다.
3. 고객 행동의 종합적 이해
고객은 다양한 프로모션에 노출되며, 이러한 노출이 고객의 구매 결정에 복합적으로 작용합니다. 개별 프로모션 분석과 통합 분석을 결합함으로써, 고객 행동의 더 깊은 이해를 도모할 수 있습니다.
4. 마케팅 자원의 효율적 배분
통합 프로모션 분석을 통해 얻은 인사이트는 마케팅 자원의 효율적인 배분을 가능하게 합니다. 각 프로모션의 효과를 개별적으로뿐만 아니라 전체적인 관점에서 평가함으로써, 예산을 더 효과적인 프로모션에 집중할 수 있습니다.
5. 장기적 마케팅 전략 수립
개별 프로모션의 성공은 단기적인 성과에 초점을 맞출 수 있지만, 통합 프로모션 분석은 장기적인 관점에서 마케팅 전략을 수립하는 데 도움을 줍니다. 다양한 프로모션의 장기적인 영향력과 지속 가능성을 평가할 수 있습니다.
6. 경쟁 우위 확보
통합 프로모션 분석을 통해 시장 내 경쟁 상황과 자사의 위치를 종합적으로 이해하고, 경쟁 우위를 확보할 수 있는 전략을 수립할 수 있습니다. 이는 경쟁사 대비 우위를 점하는 데 중요한 역할을 합니다.
고객사에서는 프로모션 분석 진행 시 앰플리튜드를 통한 단일 프로모션 위주의 분석만을 진행했었습니다.
앞서 언급했듯이 단일 프로모션 분석만 진행하게 된다면 결과적으로 장기적인 효과나 전체적인 마케팅 전략과의 연계성이 부족해지는 문제가 있습니다.
이러한 문제를 해결하기위해 프로모션을 통합적으로 확인하는 것에 대한 필요성이 대두되었습니다. 먼저, 통합 프로모션 분석을 위해 1차적으로 앰플리튜드를 통해 얻은 개별 프로모션별 데이터를 스프레드시트에서 취합해 프로모션들끼리 비교하며 인사이트를 도출했습니다.
하지만 시트를 통해 프로모션을 비교 분석하는 것에는 크게 2가지 정도의 한계가 있었습니다.첫째, 프로모션이 진행될 때마다 데이터를 확인하고, 직접 시트에 옮기는 작업을 해야 하기 때문에 자동화가 어렵다는 점입니다.둘째, 시트에 텍스트로만 적혀있다보니 해당 데이터가 무엇을 의미하는지 직관적으로 인지하기가 어렵다는 점입니다.이러한 한계를 극복하기 위해 고안한 것이 전체 프로모션을 한눈에 파악할 수 있는 대시보드를 구현하는 것이었습니다.
대시보드는 태블로(Tableau)를 사용하여 구현했습니다.
태블로는 데이터를 분석하고 시각적으로 표시할 수 있는 비즈니스 인텔리전스(BI)툴입니다. 태블로를 통해 대시보드를 제작했을 때의 장점은 다음과 같습니다.
1. 여러 raw 데이터 통합: 태블로는 스프레드시트, 데이터베이스, 클라우드 서비스 및 빅데이터 플랫폼과 같은 다양한 데이터 원본들을 원활하게 통합됩니다. 이러한 통합을 통해 다양한 소스의 데이터를 연결 가능하게 하여 데이터 사일로를 해결하고 포괄적인 분석을 가능하게 합니다.데이터 사일로(Data Silo*)**란? 서로 분리되어 기업의 다른 부서에서 액세스할 수 없는 데이터 스토리지 및 관리 시스템을 의미하며, 이는 전사관점의 의사결정을 방해하고, 비효율성이 증가시킵니다.
2. 실시간 데이터 시각화: 태블로는 라이브 데이터베이스 및 스트리밍 데이터를 비롯한 다양한 데이터 원본에 연결하여 실시간으로 데이터 업데이트할 수 있습니다. 이 기능을 사용하면 변경되는 데이터를 빠르게 모니터링하고 분석하여 빠른 의사 결정을 위한 시기적절한 통찰력을 제공할 수 있습니다.
3. 다양한 시각화 옵션: 태블로는 막대 차트, 선 차트, 산점도, 지도 등을 포함하여 다양한 시각화 옵션을 제공합니다. 정보를 효과적으로 전달하기 위해 데이터에 가장 적합한 시각화 유형을 선택할 수 있습니다.
4. 대화형 대시보드: Tableau를 사용하면 사용자가 직접 데이터를 탐색하고 상호 작용할 수 있는 고도의 대화형 대시보드를 만들 수 있습니다. 사용자는 세부 정보를 드릴다운하고, 데이터를 필터링하고, 임시 분석을 수행하여 데이터 탐색의 깊이를 향상할 수 있습니다.
통합 프로모션 분석을 위해 정의한 스케치입니다. 해당 스케치는 피그마(Figma)를 통해 작업했습니다. 스케치를 피그마로 제작한 이유는 여러가지가 있는데, 그 중 가장 중요한 이유는 피그마가 다양한 디자인 도구와 기능을 제공하기 때문에 원하는 디자인을 쉽고 효율적으로 제작할 수 있기 때문이었습니다.
스케치 대시보드를 기준으로 필요한 데이터를 정리해보면 데이터는 크게 3가지로 분류할 수 있습니다.
1. 프로모션 데이터
2. 매출 데이터
3. CRM 데이터
프로모션명, 진행일자, 분류, 컨셉 등 프로모션 진행 관련 기본 정보 및 프로모션 관련 아이템 정보가 프로모션 데이터에 해당하며, 각 프로모션에 관련된 실제 결제 정보가 매출 데이터에 해당합니다. 마지막으로 유저들에게 발송된 메시지의 발송일 및 캠페인명, 발송수 등이 CRM 데이터에 해당합니다.
다음으로 앞서 정리한 데이터를 좀 더 구체적으로 정리합니다. 각 항목별 필요한 정보가 정확히 무엇인지, 해당 데이터는 형태로 관리되어야 하는지를 비롯해 각 데이터를 연결하기 위해 어떤 컬럼을 키값으로 사용해야 하는지 등을 파악하여 정리합니다.
이때 테이블 색상에 차이를 두어 각 데이터가 어떤 소스에서 관리되는지 직관적으로 파악할 수 있도록 합니다.
필요 데이터 정의를 완료했다면, 데이터 추출을 위해 해당 데이터에 대해 알맞은 형태로 적재를 요청하는 단계가 필요합니다. 효율적인 작업을 위해 원하는 이벤트 및 세부 항목(*이벤트 프로퍼티, 유저 프로퍼티, 적재형식, 적재기준일, 요청사유 등) 관련 내용을 최대한 상세하게 기입합니다.
원하는 이벤트 및 세부 항목을 작성한 다음에 해당 내용을 정확히 어떤 형태로 적재되기 원하는지를 보여주는 샘플을 함께 작성합니다.
이제 데이터 연결을 진행해야 합니다. 해당 프로젝트에는 구글 스프레드시트, 엑셀 파일, 구글 클라우드(빅쿼리)의 소스가 사용되었습니다. 저는 그 중 ‘구글 클라우드’에 초점을 맞추어 데이터 연결과정에 대해 설명하려고 합니다.
구글 클라우드를 사용한 이유는 무엇일까요? 그 이유는 앰플리튜드(Amplitude)에 있는 매출 데이터를 연결하기 위함입니다. 앰플리튜드는 그 자체로 사용성이 높이며, 매출 데이터를 비롯하여 많은 데이터를 손쉽게 확인할 수 있는 툴입니다.
하지만 지금과 같이 더 많은 내용을 확인하기 위해서는 다른 로데이터와 결합을 해서 데이터를 확인하는 과정이 필요합니다. 이 때, 앰플리튜드에서 태블로로 데이터를 바로 전달할 수는 없습니다.
태블로로 데이터를 전송하기 위해서는 앰플리튜드의 로데이터를 가공하여 알맞은 형태로 테이블을 가공해주는 선행작업이 필요합니다. 앰플리튜드와 연동이 가능할 뿐만아니라 태블로와의 연동도 가능해야 하며 무엇보다 앰플리튜드로부터 전달받은 로데이터를 가공할 수 있는 플랫폼이여야합니다.
이 작업을 수행할 수 있는 플랫폼은 무엇일까요? 저희는 이러한 요건을 모두 고려할 때 해당 작업을 수행하기에 가장 적합한 것이 Google BigQuery라고 판단했고, 이를 활용하기로 했습니다.
앰플리튜드는 기본적으로 빅쿼리로 데이터를 바로 내보내는 기능을 제공합니다. 우선 해당 기능을 활용해 앰플리튜드 데이터를 빅쿼리에 내보내는 작업을 진행했습니다.
해당 방법을 통해 데이터를 받아올 경우, 이벤트 프로퍼티가 분리된 표 형식으로 넘어오는게 아니라 json이라는 괄호 안에 키와 값형태로 구성돼 있는 포맷(*”{”~”}”)으로 데이터가 불러와지는 문제가 발생했습니다.
태블로는 표 형태의 데이터 프레임을 인식하므로, 태블로에 데이터를 연결하기 위해서는 앰플리튜드 로데이터를 전처리하는 과정이 필요했습니다.
해당 데이터를 전처리하기 위해서는 로데이터의 형태를 파악해야 했습니다. 데이터를 확인한 결과, 텍소노미에 따라 로데이터의 구조가 다를 수 있음을 확인했습니다.
구매 이벤트의 경우 아이템 수량이 1개일 경우에는 값으로, 2개 이상일 경우에는 배열로 이벤트 프로퍼티 데이터가 들어오는 구조였습니다.
{"item_brand":"A",
"item_category":"JAJL",
"item_id":"99999",
"item_name":"GARAGEJACKET",
"item_price":"198000",
"order_id":"20240310105120687",
"total_order_items_quantity":1
…}
{"item_brand":["B","C"],
"item_category":["LFOT","반팔 셔츠"],
"item_id":["88888","77777"],
"item_name":["TRAVEL COMB","CUSTOM SHIRT"],
"item_price":[18000,113000],
"total_order_items_quantity":2}
따라서 데이터 전처리를 위해서는 각 케이스별로 다른 전처리과정을 거쳐야했습니다. 아이템 수량이 1개일경우는 JSON의 값을 파싱하는 처리를 하고, 2개 이상일 경우에는 JSON의 배열을 파싱하는 처리를 진행했습니다.
해당 내용을 처리하는 쿼리문 다음과 같습니다. 케이스별로 결과 테이블이 도출되면, 두 테이블을 유니온하여 한 테이블로 합치는 작업을 진행했습니다.
WITH single_item_orders AS (
SELECT event_time, user_id,
JSON_VALUE(event_properties, '$.order_id') AS order_id,
JSON_VALUE(event_properties, '$.item_category') AS item_category,
JSON_VALUE(event_properties, '$.item_brand') AS item_brand,
JSON_VALUE(event_properties, '$.item_name') AS item_name,
JSON_VALUE(event_properties, '$.item_id') AS item_id,
JSON_VALUE(event_properties, '$.item_price') AS item_price
FROM amplitude_test.EVENTS_353961
WHERE event_type='total_items_order_completed'
AND JSON_VALUE(event_properties,'$.total_order_items_quantity')='1'
),
multi_item_orders AS (
SELECT event_time, user_id,
JSON_VALUE(event_properties,'$.order_id') AS order_id,
item.item_category, item.item_brand, item.item_name, item.item_id, item.item_price
FROM amplitude_test.EVENTS_353961,
UNNEST(
ARRAY(
SELECT AS STRUCT
item_category, item_name, item_id, item_price, item_brand
FROM
UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_id')) AS item_id WITH OFFSET AS pos
JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_category')) AS item_category WITH OFFSET AS pos_cat ON pos = pos_cat
JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_brand')) AS item_brand WITH OFFSET AS pos_br ON pos = pos_br
JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_name')) AS item_name WITH OFFSET AS pos_name ON pos = pos_name
JOIN UNNEST(JSON_VALUE_ARRAY(event_properties,'$.item_price')) AS item_price WITH OFFSET AS pos_price ON pos = pos_price
)
) AS item
WHERE
JSON_VALUE(event_properties,'$.total_order_items_quantity')!='1'
)
-- 아이템 수량= 1인 경우의 결과와 아이템 수량= 2 이상인 경우의 결과를 합치기
SELECT *
FROM single_item_orders
UNION ALL
SELECT *
FROM multi_item_orders;
해당 작업을 완료한 결과는 다음과 같습니다.
UNNEST()함수를 포함한 단계를 거쳐 데이터 전처리를 진행할 경우 JSON을 데이터 프레임 형태, 즉 테이블 형식으로 바꾸는 것은 가능했습니다.
좀 더 직관적으로 UNNEST()함수를 이해하기 위해 예시를 들어보겠습니다. name이라는 컬럼은 값이지만, preferred langauge는 배열일 경우 빅쿼리는 테이블을 왼쪽처럼 인식합니다. 즉 값으로 구성된 행에 배열로 구성된 행을 묶어두는 구조인데요, 이 묶어둔다라는 것을 nest된 상태라고 하고, 값을 배열에 맞춰서 풀어주는 행위를 unnest라고 합니다.
하지만 UNNEST()함수를 사용할 경우 단점이 있었습니다.이 함수는 배열 내 각 요소를 별도의 행으로 확장하는 기능을 제공하기 때문에 비정규화된 데이터나 중첩된 데이터 구조를 다룰 때 필수적입니다. 그러나 비용관리의 관점에서 주의가 필요하다는 단점이 있습니다. UNNEST() 함수는 배열 내의 각 요소를 별도의 행으로 확장하기 때문에 배열에 많은 요소가 포함되어 있을 경우, 결과 데이터 세트의 크기가 급격히 증가할 수 있습니다. 이는 쿼리 처리 시간을 늘리고 처리해야 할 데이터 양이 증가함으로써 비용이 증가하는 원인이 될 수 있으며, 처리한 데이터 양에 따라 비용이 청구되는 빅쿼리에서는 쿼리 비용의 증가로 이어질 수 있습니다.
실제 프로젝트를 진행하면서 해당 쿼리문을 사용해 약 한달 간 매 시간마다 업데이트 되도록 쿼리를 돌려본 데이터 업데이트를 진행한 결과, 총 8GB를 사용해 월 40만원 가량의 비용이 소진되었습니다. 따라서 비용 효율성 측면을 고려해 전처리를 클라우드 SQL구문이 아닌 파이썬 코드로 처리하도록 우회했습니다.
앰플리튜드의 데이터를 빅쿼리로 바로 내보내는 것이 아니라 앰플리튜드 서버를 호출하여 데이터를 받아오는 방식으로, 빅쿼리에서 로우 데이터를 쌓은 후 이를 전처리하는 방식 대신 전처리를 완료한 후 가공된 데이터를 빅쿼리에 쌓는 방식으로 변경했습니다.
즉, 기존 Amplitude → Bigquery → Tableau의 단계에서 데이터 전처리를 위해 Google Cloud Storage를 추가한 Amplitude → Google Cloud Storage → Bigquery → Tableau 단계로 진행됩니다.
이 작업을 위해서는 우선 앰플리튜드와 Google Cloude Storage를 연결하는 작업을 진행해주어야 합니다. 먼저 Cloud Storage에서 고객사 프로젝트 관련 Bucket을 생성합니다.
다음으로 IAM 및 관리자 → 서비스 계정을 클릭하여 새로운 서비스 계정을 생성합니다.
서비스 계정을 생성한 후, 해당 서비스 계정에 해당하는 이메일을 확인합니다.
키 → 키 추가를 클릭하여 키를 생성합니다.
IAM 및 관리자 → 역할을 클릭하여 새로운 역할을 생성합니다. Send Amplitude Event Data to Google Cloud Storage(문서링크)를 참고해서 역할에 다음 5개의 권한을 부여해줍니다.
앞서 생성한 버킷으로 돌아가서 권한을 클릭한 후 액세스 권한 부여를 클릭합니다.
서비스 계정에서 추가한 새로운 계정에 해당하는 이메일을 입력한 후, 역할을 지정해줍니다.이때 역할은 1.저장소 기존 버킷 소유자와 2.역할 만들기를 통해 생성한 역할, 총 2개를 부여해줍니다.
해당 작업까지 완료했으면 앰플리튜드에서 Google Cloude Storage를 연결하는 작업을 진행해주어야 합니다. 앰플리튜드 Data → Destination에서 Google Cloud Storage를 클한 후 GCS로 보낼 데이터를 선택합니다.
서비스 계정 생성에서 생성한 JSON키 파일을 Service Account Key에 업로드 한 후, 하단의 Bucket Name에 구글 GCS에서 생성한 버킷 이름을 입력해줍니다.
해당 과정을 성공적으로 마치면 Google Cloud Storage Bucket에 데이터가 들어옵니다.
연동이 완료되면 다음과 같이 생성됩니다.
앰플리튜드는 export API라는 서비스를 제공하므로 이 API를 호출하여 데이터를 불러올 수 있습니다. 파이썬의 request모듈로 API요청을 보내는 함수를 구현하고, 다음으로 데이터 전처리 모듈은 pandas모듈을 활용하여 JSON 포맷을 테이블 형식의 데이터 프레임으로 전처리했습니다. 1차 시도당시 빅쿼리로 진행했던 조건문을 프로그래밍 언어로 대체한 것입니다. 마지막으로 빅쿼리 클라이언트 라이브러리를 설치하여 전처리한 테이블을 빅쿼리로 업로드하는 함수를 구현했습니다.
내용을 요약하면 다음과 같습니다.
1. 앰플리튜드
2. GCS
3. GCF
ㅤ: 버킷에 객체가 생성될 때마다 객체 데이터를 전처리한 후, 빅쿼리에 로드하는 함수 구현
해당 작업을 완료하면, 최종적으로 빅쿼리에 데이터가 정상적으로 저장되며, 태블로에 연결해서 시각화할 수 있습니다.
통합 프로모션 대시보드이므로 프로모션 간의 비교가 가능하도록 하는 것이 최우선순위 목표였습니다. 하지만 통합 프로모션 대시보드 내에서 개별 프로모션의 성과 및 관련 내용도 바로 파악이 가능하도록 대시보드를 구성하고자 했습니다.
프로모션 리스트 부분에서 프로모션 성과들을 직관적으로 비교해서 확인할 수 있도록 했으며, sales summary내의 각 KPI의 프로모션 평균값을 제공하여 프로모션의 평균값과의 비교가능하게함으로써 프로모션 간의 비교 분석이 가능하도록 대시보드를 구성했습니다. 또한 프로모션 리스트에서 개별 프로모션 클릭 시 해당 프로모션에 해당하는 내용으로 필터링이되어 표현되게함으로써 개별 프로모션의 성과 역시 파악할 수 있도록 대시보드를 구성했습니다.
데이터를 태블로로 넘긴 후 ERP 기준 매출 데이터와 정합성을 확인하는 과정에서 매출액의 약 0.2%의 차이가 발생함을 확인했습니다. 이는 최종 매출액에서 반품 및 교환 비용을 고려하지 못했기 때문에 발생한 결과였습니다.
따라서 앰플리튜드의 반품 및 교환관련 이벤트인 return_completed의 return_paid_shipping(교환 및 환불금액)관련 항목을 추가하여 해당 금액을 반영해줌으로써 데이터 정합성을 맞췄습니다.
해당 대시보드를 사용하는 고객사는 프로모션의 분류를 크게 할인과 쿠폰 2가지로 구분하고 있습니다.
즉, 1차적으로 가격을 낮춰 세일가에 제품을 구매하는 ‘할인’ 프로모션과 쿠폰을 소지하고 있는 고객이 쿠폰을 직접 사용해서 제품을 구매하는 ‘쿠폰’ 프로모션이 존재합니다. 이때 쿠폰 프로모션의 경우 총 매출 관련 항목과 쿠폰 매출 관련 항목으로 구분해서 성과를 확인할 수 있지만, 할인 프로모션의 경우 쿠폰 관련값이 존재하지 않으므로 쿠폰 매출 관련 성과는 확인이 불가능합니다. 따라서 성과를 확인함에 있어서 쿠폰 프로모션의 경우에는 쿠폰 매출 관련 항목을 확인해야 하고, 할인 프로모션의 경우에는 총 매출 관련 항목을 확인해야 합니다.
이를 적용했을 때 Sales Summary를 확인함에 있어서 결제상품수, 결제건수, 구매고객수의 경우 할인 프로모션의 경우에는 총 매출액 관련 항목으로, 쿠폰 프로모션의 경우에는 쿠폰 매출액 관련 항목으로 구분해서 표현해주어야 합니다.
이를 위해 케이스를 나누고, 쿠폰 아이디가 존재할 경우 쿠폰 프로모션으로 판단해서 쿠폰 매출 관련으로 카운트 하고, 쿠폰 아이디가 존재하지 않을 경우 할인 프로모션으로 판단해서 총 매출 관련항목으로 카운트할 수 있도록 계산된 필드를 생성합니다.
SQL
-- 결제상품수 예시
{FIXED [Promotion name1],[Classification],[Coupon Id]:
SUM(IF [Classification]='쿠폰' and ([# COUPON ID_1]= [Coupon Id]
OR [# COUPON ID_2]= [Coupon Id] OR [# COUPON ID_3]= [Coupon Id])
THEN 1
ELSEIF [Classification]='할인' THEN 1
END)}
최종적으로 제작된 통합 프로모션 대시보드는 다음과 같습니다.
대시보드 작동예시를 좀 더 자세히 살펴보면 다음과 같습니다.
1. Promotion List
Promotion List 우측 분류 및 테마 필터를 클릭하여 해당하는 프로모션을 확인할 수 있습니다.
2.Sales(sales summary)
해당 프로모션의 총 매출액, 쿠폰 매출액, 결제 상품수, 결제 건수, 구매고객수 및 각 항목에 해당하는 일평균 액수를 확인할 수 있습니다.
3. Item datail
좌측의 브랜드별, 카테고리별, 상품별 차트를 클릭해 각 항목에 해당하는 상품의 일자별 판매 현황을 확인할 수 있습니다.
우측 막대그래프에 마우스를 오버하면, 각 일자별 총 매출 및 쿠폰 매출, 총 매출 대비 쿠폰 매출 비율을 확인할 수 있습니다.
4. Sale Trend & 5.CRM Info
4. Sale Trend에서 프로모션 기간 동안의 총 매출 및 쿠폰 매출, 해당 기간 동안 CRM이 발송된 날짜에 대한 정보를 확인할 수 있습니다.
5.CRM Info에서 해당 CRM에 대한 세부 정보를 확인할 수 있습니다.
July 17, 2024
업무 시간을 데이터 수집과 데이터 전처리에 시간을 쓰는 마케터와 데이터 수집 자동화된 환경에서 성과 분석과 기획에 더 많은 시간을 쓰는 마케터 누가 더 많이 성장할까요?
답은 알고 계실 거에요. 당연히 성과 분석과 기획에 더 많은 시간을 쏟는 마케터가 장기적으로 많은 성장을 하겠죠
회사 내에서 GA4, MMP(AppsFlyer), Braze를 사용하고 있는데 엑셀로 데이터 수집해서 가공하는 시간을 대부분을 사용하고 있다면.. 하루 빨리 마케팅 데이터 수집 자동화하고 BI 구축을 시도해보세요.
관련 주제는 내용이 많기도 해서 3개로 나눠서 발행할 예정입니다.
이번 편에서는 MMP(AppsFlyer), GA4, Braze 데이터 수집을 자동화 시키는 프로세스를 설명해보려고 합니다.
데이터를 적재하고 시각화까지의 프로세스를 간단하게 도식화하면 아래와 같습니다.
브레이즈 currents 는 유저의 engagement 이벤트의 실시간 데이터 스트림입니다. 이 데이터를 Avro 파일로 제공해서 BI 및 분석 할 수 있게 지원을 해주는 장점이 있습니다. 단점은 가격이..
브레이즈 어드민에서 아래처럼 어떤 데이터를 보낼지 선택해서 어디에 저장할지 S3, Cloud Storage, Azure Blob Storage 중 선택해서 적재를 시작합니다. (가이드 링크)
예를 들어 Amazon S3 적재를 시작하게 되면 아래처럼 이벤트 별로 폴더가 생성되어 분리 적재됩니다.
브레이즈 Currents 는 At-least-once delivery 정책으로 1시간 단위로 데이터를 적재합니다.
각 폴더 안에는 Avro 파일(각 파일의 Schema는 동일한 형태)이 들어 있는데 이 파일 내에는 이벤트를 구분하는 필드가 없습니다.
일단 여기서 필요한 이벤트 데이터들을 지정해서 합쳐야 되는데 여기서 문제가 있습니다.
그래서 파일 안에 어떤 이벤트의 파일인지 지정해줘야 합니다.
아래와 같이 Avro 파일 명을 확인하여 event_type 필드의 key 값을 추가 필요합니다.
앱 데이터를 측정하는 앱스플라이어도 마찬가지로 데일리 리포트를 만드려면 OS별, UA, RT(리타겟팅)별로 csv 파일을 12번 클릭해서 받아 정리해야 되지만 API 를 활용하면 충분히 자동화 할 수 있습니다.
다만 앱스플라이어 데이터를 어떻게 볼지 기준에 대한 합의를 유관 부서와 먼저 하시는 걸 권장드리고 대행사에게도 우리 기준으로 맞춰 달라고 요청을 해야 되겠죠?
이런 기준으로 데이터를 쌓고 있었는데 데이터를 집계하는 기준이 서로 차이가 있다면 .. 다시 작업해야 되는 불상사가 생길 수 있습니다.
이게 무슨 말이냐면 앱스플라이어 Media Source 중 SRN 매체들의 경우 개인정보 보호 이슈로 rawdata에 포함되지 않아서 집약형 데이터를 활용합니다.(가이드 링크)
그래서 SRN 매체를 사용 중이시라면 집약형 데이터를 활용해서 집계를 해야 하는데 집약형 데이터는 LTV 데이터라서 조회 시점마다 Total Revenue 값이 달라집니다. (관련글 보러가기 링크)
1/1 데이터를 1/7일에 조회했을 때랑 1/14일에 조회했을 때의 total revenue가 달라진다는 의미입니다. 이러게 되면 가장 최근에 조회한 일자일 수록 ROAS가 높게 나오겠죠?
또한 skan 리포트도 마찬가지로 SRN 매체 광고를 운영 중에 있다면 해당 리포트도 받아야겠죠? 이것도 마찬가지로 조회시점마다 성과 숫자가 달라질 수 있습니다
앱스플라이어 데이터 자동화 수집을 위해선 크게 3가지 api 가 필요하고 세부적으로는 인스톨과 인앱이벤트 데이터를 가져와야 합니다. (추후에 앱스플라이어 데이터를 전처리하는 방법에 대해서 포스팅 해보겠습니다.)
GA4 빅쿼리는 실무에서 쓰고 있는 조직이 있나 싶을 정도로 .. 사용하기가 좀 꺼려집니다. 원시 데이터라서 데이터 가공의 자유도가 엄청나게 높지만.. 집계를 하는 입장에서는 굉장히 머리 아픕니다. 정합성을 어디다가 맞춰야 되는지..
그래서 광고 데이터 성과를 집계할 때는 특별한 이유가 없다면 GA4 API 데이터를 소싱하는 게 정합성 의심의 여지가 없기 때문에 무조건 낫다고 봅니다.
GA4 데이터를 소싱할 때 진짜 진짜 주의해야 할 점이 바로 샘플링입니다.
샘플링 진짜 …. 데이터량이 많으면 더 심해집니다.
GA4 API 를 14일치만 호출해도 샘플링된 양이 상당합니다.
GA4 Query Explorer 에서도 조회해도 어드민이랑 큰 차이가 있어서 구글 측에 문의를 해보니 여기도 데이터 조회 일자 범위가 넓으면 샘플링이 적용된다고 합니다. 추후에 해당 이슈 해소하겠다고 합니다.
일단 우리는 샘플링 되지 않을 정도의 날짜 범위로 api 를 호출해서 적재를 하는 것이 좋습니다.
이번 편은 마케팅 데이터 수집 자동화에 대해서 알아보았고 다음 편에서는 인사이트 도출을 위한 데이터 전처리 방법에 대해서 알아보겠습니다!
July 16, 2024
GA4 데이터를 빅쿼리로 보내면 뭐든 다 해결될 것 같은 이야기들이 많지만 실상은 그렇지 못합니다. GA4 인터페이스와 차이가 많고 많은 데이터 용량으로 ETL 과정으로 생각보다 리소스가 많이 듭니다. 그럼에도 불구하고 빅쿼리를 쓰는 이유가 뭘까요?
GA4 빅쿼리 데이터를 가공하다보면 어? 뭐지? 하는 현상들이 있는데 대표적인 하나의 케이스를 공유해볼까합니다. 바로! 빅쿼리에 저장되는 GA4 데이터에는 구글 관련 트래픽에 가장 큰 문제가 있다는 것입니다ㅜㅜ
gclid 파라미터(구글 애즈 캠페인으로 들어온 트래픽이라는 의미)가 있는 세션이 시작 되었을 때 빅쿼리는 utm_medium, utm_campaign 파라미터를 (organic)으로 기록해버립니다
다시 말하면 구글 애즈로 들어왔다는 데이터라고 식별은 되지만 캠페인 명이 증발해버리는 현상입니다.
with events as (
select
cast(event_date as date format 'YYYYMMDD') as date,
concat(user_pseudo_id, (select value.int_value from unnest(event_params) where key = 'ga_session_id')) as session_id,
user_pseudo_id,
(select value.int_value from unnest(event_params) where key = 'ga_session_id') as session_start,
if(
(select value.string_value from unnest(event_params) where key in ('campaign_id', 'campaign', 'source', 'medium', 'term', 'content', 'gclid', 'dclid', 'srsltid') and value.string_value is not null limit 1) is not null,
(
select as struct
(select value.string_value from unnest(event_params) where key = 'campaign_id') as manual_campaign_id,
(select value.string_value from unnest(event_params) where key = 'campaign') as manual_campaign_name,
(select value.string_value from unnest(event_params) where key = 'source') as manual_source,
(select value.string_value from unnest(event_params) where key = 'medium') as manual_medium,
(select value.string_value from unnest(event_params) where key = 'term') as manual_term,
(select value.string_value from unnest(event_params) where key = 'content') as manual_content,
(select value.string_value from unnest(event_params) where key = 'gclid') as gclid,
(select value.string_value from unnest(event_params) where key = 'dclid') as dclid,
(select value.string_value from unnest(event_params) where key = 'srsltid') as srsltid
),
null
) as collected_traffic_source,
event_timestamp,
stream_id,
(select value.string_value from unnest(event_params) where key = 'device_category') device_category,
event_name,
ecommerce.purchase_revenue_in_usd as purchase_revenue_in_usd,
case
when event_name = 'purchase'
then 1 else 0 end AS purchase
from
`테이블명`
where
_TABLE_SUFFIX >= '20231001' AND _TABLE_SUFFIX <= '20231001'
and (select value.string_value from unnest(event_params) where key = 'source') = 'google'
)
select * from events
order by session_id
이 현상을 해결하려면 UTM 파라미터를 자동 태깅(gclid)를 대신해서 사용하거나 URL에 커스텀 파라미터를 붙여서 해결할 수 있긴 합니다.
유저 레벨 분석이 아닌 마케팅 성과를 집계하기 위한 목적으로 GA4 데이터를 활용하고자 한다면 Bigquery Export 보다는 Google Analytics Data API 를 활용해서 일별로 내부 DataWarehouse에 저장하는 방식이 더 효율적일 것 같습니다.
참고로 Google Analytics Data API 를 활용한다면 집계된 데이터를 받아오기 때문에 Total Users 와 같은 유니크한 집계값 (Count Distinct)를 해야되는 지표는 제외하고 이벤트 단위의 지표만 활용해야합니다. 이유는 아래와 같습니다.
4명의 유저가 2024-01-01 ~ 2024-01-03 에 방문했습니다.(로우 데이터)
일별 Total User 를 집계해보면
전체 기간의 Total User 를 집계해보면
일별, 기간별 집계 했을 때 유니크 사용자수는 완전히 다릅니다. (DAU, MAU 개념과 동일)일별 테이블을 다 더해서 집계를 해서 사용하시면 쓸모없는 지표가 되어버리기 때문입니다.
그래도 유저레벨 단위로 혹은 GA4 인터페이스에서 처리 못하는 방식의 데이터 가공이 필요하다면 위의 케이스를 반드시 고려해서 빅쿼리를 사용하시는 걸 권장드립니다.
Why your BigQuery results don't (exactly) match with Google Analytics reports (GA4)
July 15, 2024
SEO 분석의 핵심 채널은 구글과 네이버 입니다. 그 중 구글에서는 사이트로 들어오는 유저의 검색 키워드를 분석 할 수 있게 도와주는 구글서치콘솔(GSC)을 제공하고 있습니다. 이를 통해 어떤 키워드가 더 노출과 클릭이 잘 되고 있는지 어떤 키워드가 문제인지를 확인할 수 있습니다.
다만 구글서치콘솔의 기본 목적은 구글이 도메인의 정보를 수집해가는 사이트맵 관리용으로 출발하다 보니 키워드별 깊이있는 통계 분석을 하기는 어렵습니다.
이로 인해 구글서치콘솔의 다소 부족한 통계를 보완하여 더 효과적인 구글 SEO 분석에 도움을 주기 위해 대시보드를 구성하였습니다. 총 4개의 영역으로 구성되어 있으며 각 대시보드의 활용 방식은 아래와 같습니다. SEO 관리를 위해 분석하면 좋을 지표와 방식들에 집중해서 같이 살펴보시면 좋을 것 같습니다.
July 12, 2024
데이터를 구성하는 형식은 크게 Long format data와 Wide format data로 구분할 수 있습니다.
각 유형 별 특징 및 장단점에 대해 살펴보겠습니다.
Wide Format Data는 각 주제 또는 관찰단위가 단일 행으로 표시되는 구조입니다.
특징:
사용시 장점:
특징:
사용시 장점:
Wide Format 데이터를 태블로에 입력하면 학생Id는 차원에, 점수관련 항목은 측정값으로 구분됩니다.
이를 활용해 하나의 테이블을 생성하기 위해서는 점수관련 항목을 모두 선택해주어야합니다.
반면 Long Format 데이터를 태블로에 입력하면 학생Id와 시험 항목은 차원에, 점수는 측정값으로 구분됩니다. 이를 활용해 하나의 테이블을 생성하기 위해서는 열에 시험 차원을, 행에 학생 Id차원을 올려놓은 후 점수 값을 표에 입력하면 됩니다.
다음은 해당 데이터들을 활용해 그래프를 생성해보겠습니다.
먼저 Wide Format 데이터의 경우 국어시험, 수학시험, 영어시험은 각각 다른 차원에 존재하는 데이터이므로 이를 하나로 합친 차트를 구현하는 것은 불가능합니다.
반면 Long Format 데이터의 경우, 시험이라는 하나의 차원을 기준으로 점수라는 측정값이 적재되어 있기때문에 해당 데이터를 이용해서는 하나의 차트 내에서 3가지 항목을 구분하여 구현할 수 있습니다.
→ 따라서 Tableau를 활용하여 시각화를 구현할 때에는 Long Format형식의 데이터를 사용하는 것이 더욱더 다양한 시각화가 가능합니다.
July 10, 2024
이번 글에서는 Udemy교육 플랫폼에 대한 분석과 해당 분석을 바탕으로한 대시보드를 그려보려고 합니다. 교육관련 비즈니스나 지식 기반 서비스 운영하는 경우 해당 분석과 대시보드가 참고가 될 수 있을 것입니다.
Kaggle에 올라와 있는 Udemy 데이터를 활용하여 분석을 진행하였습니다. 혹시 데이터가 필요한 분들은 아래 링크를 참고해주세요.
Udemy는 글로벌 교육 커머스 플랫폼 입니다. 마케팅이나 데이터 분석 뿐 아니라 개발, 라이프스타일, 비즈니스 등 다양한 분야의 강의들이 판매되고 있습니다. 가격이 그렇게 부담되지 않기 때문에 기회가 되신 다면 한번 들어보시면 좋을듯합니다. 다양한 국가 언어를 제공해 주지만 한글 비율은 높은편은 압니다. 다만 대부분 자막을 제공해주기 때문에 어렵지 않게 양질의 자료들을 보실 수 있습니다.
국내에서 Udemy와 비슷한 비즈니스 모델로는 패스트캠퍼스, 클래스 101, 인프런 같은 서비스가 있습니다.
지식 기반 상품을 판매하는 이러한 비즈니스 모델의 특징은 커머스와 크게 다르지 않습니다. 다양한 주제(카테고리 & 브랜드)의 강의(상품)가 있고 고객이 원하는 강의가 있다면 개별 강의를 구매하는 방식으로 구매 여정이 이루어져 있습니다.
일반 상품과 다르게 무형의 상품이다보니 체험 형식의 무료 과정이 활발하게 활용되는 편입니다. 강좌 개설도 자유롭게 할 수 있으며, 강좌에 대한 홍보도 직접 진행할 수 있다보니 스마트스토어에 상품을 직접올려서 판매하는 오픈마켓의 방식과 거의 유사합니다.
해당 분석의 목표는 강좌를 만드는 강의자와 Udemy에서 강좌를 서포트하는 매니저가 사용 할 수 있는 분석과 대시보드 제작을 목적으로 진행하려고합니다. 이를 통해 주요 인기 카테고리와 상위 강좌로 올라가기 위한 조건이나 기준들을 살펴보도록 하겠습니다.
데이터 세트는 총 12개 항목(컬럼)으로 이루어져 있습니다.
데이터 수는 3682개로 이루어져 있습니다.
EDA를 통해 기본적으로 데이터의 모양을 살펴보고, 데이터 특징을 파악하며 데이터 퀄리티를 높이는 작업을 합니다.
EDA 진행 전 필수적으로 확인해야하는 단계가 데이터 퀄리티 확인 단계입니다. 이는 '데이터 클리닝' 이라고도 부르는 단계로 데이터 결측치, 데이터 중복, 이상치를 확인하는 단계 입니다. 실제로 해당 Raw 데이터는 결측치가 있는 데이터로 적절한 결측치 처리가 필요하였습니다. 이번 데이터는 결측치가 6개 row에서 발견되어 해당 row를 제거하는 방식으로 진행하였습니다. 만약 결측치가 많다면 보간 방식으로 데이터를 적절하게 채워 분석을 진행할 수 있습니다.
EDA를 통해 몇가지 특징을 확인할 수 있었습니다.
앞서 진행한 EDA 과정을 통해 분석 대시보드는 주요 지표를 보여주는 Overview와 주요 지표를 드릴다운해서 볼 수 있는 개별 영역으로 나누어서 구성하였습니다.
각 화면별 자세한 구성은 아래와 같습니다.
개요 대시보드의 구성은 대부분 유사하게 구성합니다.
주요 KPI와 해당 KPI의 시간별 퍼포먼스를 볼 수 있는 영역을 기본으로 구성합니다. 이외에 주요 지표 구성 요소를 배치하여 가볍게 드릴 다운 해서 볼 수 있는 구성을 합니다.
시간에따른 KPI 성과 영역은 선택 측정항목 기능을 활용하여 측정항목을 자유롭게 변경하며 분석하거나 기간 단위를 일 -> 주 -> 월 로 변경하면서 트렌드를 다양하게 확인할 수 있게 구성하였습니다.
커머스로 비유하면 교육 산업에서 구독자는 구매자와 동일합니다. 다만 서비스하는 교육과정이 많다보니 적정한 기준으로 교육과정을 나누어 과정 별 특징을 확인하면 분석 편의성을 높일 수 있습니다.
가장 간단한 그룹화 방법 중 하나는 파레토 법칙을 이용하는 방식입니다. 아래 그림과 같이 가장 많은 교육과정 or 상위 10% 기준을 확인한다면 새롭게 강의를 런칭하는 신규 강사의 입장에서 바라봐야할 목표 지표를 세울 수 있습니다.
교육 산업의 특징 중 하나는 무료 강의를 통해 플랫폼에 대한 인지를 높이는 전략을 가져가는 것입니다. Udemy 또한 평균 10% 내외의 무료 강의 비율을 보이고 있습니다. 강의 수는 10% 내 외이지만 실제 해당 무료 과정을 통해 플랫폼 경험을 하는 유저 수는 30% 이상 될 정도로 무료 과정은 중요한 역할을 하고 있습니다.
상품을 구매하는데 있어 중요한 항목 중 하나는 누군가의 추천입니다. 공급자는 대부분 상품의 좋은 점을 강조하기 때문에 다른 유사 상품과의 차이가 두드러지지 않습니다. 특히나 비슷한 주제의 강의라면 커리큘럼과 실습방식 외 나머지 강의 요소를 상세페이지에 표현하기 어렵습니다. 강의 전달 방식이나 강의자의 톤, 발성, 논리정연한 강의력 등 실제 강의를 들은 수강생의 생생한 후기는 많은 경우 구매 전환에 매우 큰 영향을 줍니다. 실제로 리뷰와 수강생의 상관도가 높은 것으로 확인되며 상위 5% 강의의 리뷰율은 다른 하위 강의 대비 2배 가까이 높은것을 알 수 있습니다.
카테고리 또는 레벨, 유무료 별 평균 리뷰율을 알았다면 특정 강의의 매출을 높이는 데 있어 하나의 기준이 될 수 있습니다. 평균 대비 리뷰율이 낮다면 단기적으로 리뷰를 높이는 이벤트를 열거나 리뷰가 낮은 부분을 피드백하며 강의 자체의 개선에 활용하는 방식을 가져갈 수 있습니다.
어떤 카테고리가 현재 인기 있는지 알 수 있습니다. 카테고리에 상관없이 Beginner or All level이 개설 과정수도 많고 매출 비율도 높습니다. 레벨이 올라갈수록 타겟 가능한 사람을 찾는 것도 어렵고 해당 타겟의 구매 전환도 낮은편입니다. 실제로 강사의 입장에서도 레벨이 높아질수록 강의 준비 과정 난이도가 높아지기 때문에 낮은 레벨을 더 선호하는 편입니다.
카테고리 & 레벨 별로 현재 비어있는 과정을 보면서 전략적으로 강의를 개설할 수 있습니다.
앞서 파레토 법칙에 따라 구독자수 기준 상위 5%, 10%, 20%, 50%, 기타 그룹으로 계급을 나누었습니다. 그리고 상위 그룹과 리뷰의 상관도가 높은 것을 알 수 있었습니다. 즉, 상위 그룹에 올라가기 위해서는 필수적으로 수강생 리뷰가 쌓이고 구매 선순환이 이루어지는 시간이 필요합니다. 따라서 계급별 평균 개설 시간을 보면서 상위 계급에 올라가기 위해 얼마 만큼의 기간이 필요한지 대략적으로 가늠할 수 있습니다.
또한 계급별 주요 지표간 상관도를 보면서 어떤 지표를 우선으로 해서 강의를 만들지 전략적으로 접근할 수 있습니다. 실제 계급 구독수와 강의수 & 강의시간의 상관도가 높은것을 알 수 있습니다.
반대로 구독자수와 강의가격은 생각보다 높은 상관도를 보이지 않습니다. 충분히 유용한 강의수와 시간을 보유하고 있다면 강의 가격은 구매 결정에 상대적으로 낮은 영향력을 보입니다.
해당 글에서 예시로 활용한 데이터는 과거의 데이터다보니 앞서 도출한 인사이트가 현재 강의 환경과 맞지 않을 수 있습니다. 다만, 분석 과정과 주요 지표 표현 방식 등은 충분히 유효합니다. 앞서 서두에 설명 한 것 처럼 지식 기반 비즈니스가 아닌 일반 커머스 비지니스에서도 해당 분석 흐름과 대시보드 구성을 참고해서 활용해보시면 좋을 것 같습니다.
July 10, 2024
리텐션(Retention)은 고객이나 사용자가 특정 기간 동안 어떤 제품이나 서비스에 계속 관여하거나 이용하는 비율을 말합니다. 즉, 얼마나 많은 사용자가 시간이 지남에 따라 제품이나 서비스를 계속 사용하는지를 나타내는 지표입니다. 높은 리텐션율은 고객 충성도가 높고, 제품이나 서비스에 대한 만족도가 높음을 의미합니다.
리텐션을 지속적으로 측정하고 관리하는 것이 중요한 이유는 여러가지가 있습니다. 리텐션은 단순히 고객이 제품이나 서비스를 계속 사용하는 것을 넘어서 기업의 지속가능성과 직접적으로 연결되는 핵심 지표입니다. 리텐션이 중요한 이유를 좀 더 자세히 살펴보면 다음과 같습니다.
리텐션을 측정하는 기준에는 다양한 방법이 존재합니다. 그 중 Amplitude에서 확인할 수 있는 리텐션의 종류인 ‘N-day Retention’과 ‘Unbounded Retention’에 대해 좀 더 자세히 알아보려고 합니다.
N-day Retention은 사용자가 처음 제품이나 서비스를 이용한 후 특정 일수(N일) 후에도 계속 이용하는지를 측정하는 방법입니다. 예를 들어, 7-day Retention은 사용자가 서비스를 처음 이용한 후 7일째 되는 날에도 서비스를 이용하는 비율을 의미합니다. 해당 리텐션은 초기 사용자 참여, 온보딩, 새로운 기능, 단기 마케팅 캠페인 분석을 위해 사용됩니다.
Unbounded Retention은 특정 기간 동안 사용자가 최소 한 번이라도 제품이나 서비스를 이용했는지를 측정하는 방법입니다. 이 방법은 시간이 지나도 사용자가 이탈하지 않고 계속해서 제품을 사용했는지의 여부만을 고려합니다. 해당 리텐션은 장기적인 참여, 고객 충성도, 반복 구매, 주기적인 콘텐츠 업데이트 분석을 위해 사용됩니다.
리텐션 차트는 시간에 따른 사용자의 이탈 및 유지 패턴을 시각적으로 표현한 그래프입니다. 이 차트는 특정 기간 동안 사용자 그룹의 리텐션율 변화를 보여줍니다. 리텐션 차트를 통해 크게 행 기준 분석과 열 기준 분석을 수행할 수 있습니다.
리텐션 커브는 시간에 따른 리텐션율의 변화를 나타낸 것입니다. 이 커브는 초기 사용자 참여 이후 리텐션율의 감소 패턴을 한눈에 파악할 수 있게 해줍니다.
리텐션 커브는 감소형태에 따라 유형를 크게 3가지로 나눌 수 있습니다.
시간이 지남에 따라 사용자 참여가 감소되는 패턴의 커브입니다. 이는 가장 흔히 보이는 커브의 형태로, 초기참여 이후 사용자의 관심이 감소됨을 의미합니다.
초기 감소 후 리텐션율이 안정적으로 유지되는 패턴의 커브입니다. 이는 사용자들이 제품이나 서비스에 익숙해지고 일정수준의 참여를 계속해서 유지함을 나타냅니다.
리텐션 감소 후 시간이 지남에 따라 다시 증가하는 패턴의 커브입니다. 이는 매우 긍정적인 상황으로, 사용자들이 초기 이탈후 일정시간이 지나 다시 제품이나 서비스에 관심을 가지기 시작함을 의미합니다.
July 8, 2024
블로그를 하다보니 SEO에 대한 키워드 최적화와 분석을 많이 하고 있습니다.
그 중 최근 많이 활용하는 분석 방법 중 하나는 풍선 차트를 활용한 키워드 분석입니다.
풍선(버블) 차트는 여러개의 측정기준을 두고 분석할 수 있다보니, SEO 같이 단일 키워드 별로 다양한 측정기준 간 비교를 해야하는 경우 유용합니다.
아래는 풍선차트로 분석하는 SEO 예시입니다.
X축 : 클릭율(CTR)
Y축 : 노출 순위(Average position)
풍선크기 : 노출(Impression)
풍선색상 : 기기 카테고리(Device Category)
1. 날짜 필터SEO는 즉각적인 효과 분석보단 장기간에 걸친 데이터 분석이 필요합니다. 기간별 키워드 지표의 변화를 확인할 수 있습니다.
2. 검색어(Query)관리해야하는 키워드가 수 백개를 넘어갑니다. 관리 할 키워드가 많은 경우 노출이나 클릭 기준으로 키워드 필터를 걸어서 관리하면 편합니다.
3. 기기서비스의 특성에 따라 PC, MO 중 검색 선호 기기가 다른 경우가 많습니다.
4. 국가글로벌 서비스의 경우 국가별로 반응하는 키워드와 키워드별 지표 트렌드가 달라질 수 있습니다.
5. 최소노출량롱테일 키워드는 노출량이 적지만 키워드의 양이 많습니다. 따라서 최소 노출량 필터를 두어서 분석 편의성을 높일 수 있습니다.
6. 축 평균값각 축의 평균값 선을 두어서 평균값 기준 키워드 그룹을 4분면으로 나누어 관리할 수 있습니다.
7. Y축 역방향Y축은 평균 게재순위 입니다. 기본적으로 1에 가까울 수록 좋은 키워드 그룹이기 때문에 Y축 방향을 반전 시켜 1이 위쪽으로 배치될 수 있게 하면 분석 편의성을 가질 수 있습니다.
8. 로그 스케일키워드간 지표의 차이가 크게 발생하는 경우 로그 스케일을 사용하면 차트에 분포되어 있는 검색어를 더 쉽게 파악할 수 있습니다.
👉 관련 대시보드 : https://lnkd.in/gQQ9_8r7
분석은 축 평균 기준으로 4개 분면으로 키워드 그룹을 나누어 전략을 다르게 가져갈 수 있습니다.
1️사분면 : 노출순위가 높고, CTR도 우수한 유효 키워드 그룹
2️사분면 : 노출순위가 낮고, CTR은 높은 잠재 우수 키워드
3️사분면 : 노출순위도 낮고, CTR도 낮은 문제 키워드 그룹
4️사분면 : 노출순위가 높지만, CTR은 낮은 관리 필요 그룹
👉 자세한 SEO 분석 전략 : https://lnkd.in/gJDbrBzp
July 4, 2024
태그 설치를 끝낸 후 GA4 대시보드에서 데이터가 잘 수집되는 것을 확인했다면 이제 데이터 시각화 기능인 루커 대시보드와 연동하여 나만의 대시보드를 만들 수 있다.
GA4의 유입 데이터와 내부 데이터를 연동하여 한 화면에서 비즈니스 데이터를 확인할 수 있기 때문에 데이터 기반 인사이트를 용이하게 확인할 수 있다. 내 웹사이트에 어떤 경로로 들어왔는지, 어느 페이지에서 이탈률이 높은지, *스크롤은 몇 % 내리는지, 어느 광고 매체에서 구매 전환 혹은 매출이 많이 일어나는지 한 화면에서 확인이 가능하다.
그리고 루커 대시보드는 gmail 계정만 있으면 관련 담당자와 쉽게 공유할 수 있으므로 타 부서와 긴밀하게 매출과 비즈니스 KPI를 관리할 수 있다는 장점이 있다.
루커 대시보드에서 차트를 구현할 때 연동하는 데이터 세트를 ‘데이터 소스’라고 한다. 데이터 소스는 루커 스튜디오의 커넥터를 클릭하여 쉽게 연동이 가능한데, 루커는 무려 1,000개 이상의 다양한 데이터 소스를 간편하게 연동할 수 있도록 지원하고 있다. (연동 가능한 데이터 소스 종류 확인하기)
만약 내가 기존에 적재하고 있던 구글 시트 보고서의 데이터와 GA4 데이터를 기반으로 대시보드를 만들고자 한다면 구글시트와 GA4 계정을 커넥터에 연결해서 확인할 수 있다.
구글 시트 보고서와 GA4 데이터를 연결해야 하기문에 커넥터에서 ‘Google 애널리틱스’와 Google Sheet를 클릭하여 연동을 시작한다. 구글 시트는 워크시트별로 연동이 가능하고 GA4는 해당 계정에 대해 권한이 있어야 연동이 가능하다. 다만 이때 각 열의 헤더(제목)이 있어야 하고 헤더는 중복되면 안된다.
루커 스튜디오는 ‘보기’모드와 ‘수정’모드가 있다. 보기 모드는 편집자 권한이 없는 사람이 대시보드가 보이는 형태를 확인할 수 있고 편집자 모드가 있을 경우 ‘수정’모드에서 각 차트와 대시보드 스타일에 대한 요소들을 생성 및 수정할 수 있다.
수정 모드에서는 가장 우측 데이터, 속성, 필터 표시줄 이모티콘을 클릭함으로써 각 기능에 대한 툴바를 숨김 처리할 수 있다.
(상단 좌측부터 순서대로 설명)
[✔︎ 가장 많이 쓰는 차트 예시]
(1) 막대그래프 및 열 차트 (링크)
(2) 선 차트 및 콤보 차트 (링크)
(3) 스코어카드 (링크)
1개의 측정항목에 대한 요약 수치를 표시할 수 있다. 전자상거래 대시보드에서는 총매출, 구매 수, 광고소진액, 신규 유저, MAU, DAU에 대한 수치를 증감률과 함께 확인할 수 있다.
(4) 시계열 (링크)
시간의 흐름에 따라 데이터가 어떻게 변화되는지 확인할 수 있다. 전자상거래 대시보드에서는 일별 구매수, 세션별 일별 구매자 수, 일별 광고비 등을 확인할 수 있다.
(5) 원형 차트 (링크)
값 비율 차이가 큰 데이터를 비교할 때 많이 쓰는 차트로 전자상거래 대시보드에서는 광고비 비중, 채널별 비중을 확인할 수 있다.
(6) 트리맵 차트 (링크)
값이 큰 데이터 항목일수록 색상이 진하고 크기가 크게 표시되는 차트로 계층별로 정리하여 비교할 수 있다는 장점이 있다.
(7) 피벗 테이블
루커 시보드에서 데이터를 연결하고 어떤 차트를 구현할 수 있는지 파악이 완료되었다면 실제로 내가 활용할 대시보드의 목차를 기획해야 한다. 대시보드를 이용하는 사용자가 누군지 파악해야 하고 가능하면 사용자 관점에서 보기 편리하도록 대시보드를 구성해야 한다. 즉, 사용자가 무엇을 알고 싶어 하는지를 파악해야 한다.
가장 좋은 방법은 파악한 사용자들과 함께 회의를 통해 목차를 구성하고 아웃라인을 작성하는 것이지만 그것이 어렵다면 목차라도 함께 작성해야 한다. 사용자가 대시보드를 보고 의미를 쉽게 파악하지 못하거나, 알고 싶은 데이터가 대시보드에 반영되어 있지 않다면 지금까지 노력을 기울여 만든 대시보드의 활용성을 떨어지기 때문에 이 부분을 가장 중점적으로 생각해야 한다.
이커머스 서비스에서 가장 기본적으로 파악해야 하는 그래프를 바탕으로 대시보드 목차를 생각해 보면 다음과 같다.
GA4, 루커 스튜디오와 같이 구글 플랫폼을 활용할 때 많이 들어볼 수 있는 측정항목과 측정 기준의 개념을 이해하고 가는 것이 좋다.
Dimensions (측정기준)
Metrics (측정항목)
예를 들어 위 그림처럼 매체별 광고 성과에 대한 피벗 테이블 차트를 구현하고 대시보드에 추가하려고 한다면 어떻게 해야 할까?
피벗 테이블을 추가하고 수식을 걸지 않은 광고비, 노출, 클릭, 구매, 구매금액까지는 데이터 소스에서 추출하여 측정항목을 선택하여 그대로 차트에 넣으면 된다. 단, CPC, CTR, ROAS의 경우 수식 계산이 필요한데 계산된 필드로 만들어서 측정항목으로 추가할 수 있다.
계산된 필드 생성을 클릭하면 필드 생성 창이 뜨는데, 원하는 측정항목 이름으로 필드 이름을 적은 후 수식에 루커 스튜디오 함수 목록을 참고하여 수식을 입력한다.
[✔︎ 많이 쓰는 함수식]
(1) CPC
SUM(광고비) / SUM(클릭수)
(2) CTR
SUM(클릭) / SUM(노출)
(3) ROAS
SUM(구매금액) / SUM(광고비)
(4) CPI
SUM(광고비) / SUM(설치수)
(5) CPA (구매)
SUM(광고비) / SUM(구매이벤트수)
* 루커스튜디오 함수 목록 (링크)
이렇게 맞춤으로 생성한 계산된 필드는 데이터 툴바에서 파란색으로 필드명이 보이게 된다. 대시보드 화면에 추가한 차트를 클릭하여 해당 차트의 측정항목에 필드명을 가져온다.
속성 툴바에서는 설정과 스타일 탭 두 가지가 있는데 설정 탭에서는 차트에 들어가는 측정항목에 대한 추가/삭제, 필터, 정렬을 설정할 수 있고 스타일 툴바에서는 차트 색, 소수점, 글꼴, 데이터 없음 표시 종류 등 디자인과 관련한 항목을 설정할 수 있다.
(1) 소수점 변경하는 방법
(2) 색상 변경하는 방법
(3) 데이터 누락 서식 지정하는 방법
지금까지 루커 대시보드를 구현하는 방법에 대해 데이터 연결부터, 시각화 구성, 루커 대시보드 구현하는 방법까지 설명하였는데 루커 대시보드를 직접 구현해 보는 데 도움이 되었으면 좋겠다. 예시 대시보드를 참고하여 우리 서비스만의 대시보드를 만드는 것도 좋은 연습이 될 것 같다. 실제 우리 데이터를 연결해 보고 다양한 시각화를 시도해 보며 경험을 쌓는 데 좋은 시작이 될 것이라고 믿는다.
*궁금한 점이나 추가적인 도움이 필요하다면 언제든지 문의해 주세요! 여러분의 데이터 시각화 여정에 도움이 되기를 바랍니다. 감사합니다😊
July 3, 2024
본업이 그로스마케터이므로... '그로스마케팅'와 관련된 포스팅을 지속적으로 작성하고 있는데요. 관련 키워드로 '패션마케팅'이 검색량이 높아 무신사, 29CM, W컨셉을 사례로 준비해 보았습니다. (좀 더 알아보니 패션마케팅은 대학교 학과가 있어 입시생들의 검색량이 높은 키워드인 듯은 하네요.)
무신사의 브랜드마케터 채용 공고를 먼저 보겠습니다.
cf. https://brunch.co.kr/@marketer-emje/13
퍼포먼스마케팅에서 배너 광고를 운영할 때 그 소재로 브랜드가 강조될 수 있고, 프로모션이 강조될 수도 있고, 인플루언서가 강조될 수도 있고 메인 콘셉트를 무엇으로 하느냐에 따라서 소재 베리에이션은 다채로울 수 있는데요. 예시와 함께 보겠습니다.
페이스북 광고 라이브러리에서 'WConcept'을 검색했을 때 결과 중 일부를 가져왔는데요.
W컨셉에서 W컨셉 페이지로 랜딩 시키는 것은 당연한데, W컨셉에 입점해있는 '브랜드'들이 광고의 랜딩을 랜딩을 W컨셉으로 보내네요!
소규모 브랜드라면 개별 웹사이트를 관리, 운영하는 것보다 수수료를 감안하더라도 의류 플랫폼(W컨셉 등)에서의 매출을 높이는 것이 더 낫다고 판단했다고 추측할 수 있습니다.
신규 가입과 앱 첫 구매의 내용이 담겼다는 것은 해당 광고의 세팅이 '리타겟팅'이 아닐 것이라 추측할 수 있습니다. 아마 성별만 '남성'으로 지정하고 오픈 타겟으로 열지 않았을까 싶네요. 디타겟팅(=타겟에서 제외하는 것)으로 이미 회원인 분들과 앱이 있는 분들을 타겟에서 제외하고요.
해당 업무는 일반적인 퍼포먼스마케터/그로스마케터가 진행하기보다는 무신사의 예시처럼 '인플루언서 마케터'의 직무가 따로 있는 경우가 많습니다.
인스타그래머라면 피드, 스토리의 이미지/워딩 그리고 유튜버라면 유튜브 구성안과 기획안을 검토하면서 논의를 이어가게 됩니다. 일정, 비용, 스토리라인, 강조되어야 하는 점, 해시태그 등을 이야기하고요.
하단 예시처럼 유상 광고 소재(인스타그램 광고 소재)로 인플루언서의 이미지를 활용하는 경우 추가 협의가 필요합니다.
새로운 회원들을 어느 정도 유치했다면, 그 회원들을 계속해서 유지하는 것이 관건이겠죠. 리텐션(=재방문율/재구매율)이 그 지표가 되는데요. 리텐션의 기본으로 여겨지는 것 중 하나가 멤버십입니다.
W컨셉은 5개의 멤버십 등급을 가지고 있고, 그 기준으로는 누적 구매액과 함께 구매'수량'을 같이 보고 있습니다. 해석해 보자면 딱 한 개의 상품만 샀는데 - 그 상품이 100만 원짜리였다 -라고 했을 때 한 번에 VIP로 가는 것을 방지하기 위함이라고 볼 수 있습니다. 한 번 들어와서 비싼 것 한 개 산 사람보다, 여러 번 들어와서 중고가를 여러 개 산 사람이 더 충성도가 높다고 판단하는 것이겠죠?
29CM의 경우 동일한 워딩에 여러 브랜드X상품 이미지를 활용하기 위해 조금 포괄적인 내용을 광고 워딩으로 썼는데요. 29CM의 아이덴티티 + 매월 멤버십 쿠폰 ~15% 혜택을 강조합니다. 여기엔 신규 회원 가입이나 앱 설치 쿠폰이 없는 것을 보아 신규를 대상으로만 하는 광고가 아님을 알 수 있고요.
무신사스탠다드(무신사의 PB브랜드)의 마케팅 팀장 채용 공고에도 '중요 이벤트와 프로모션 지원을 통해' 라는 워딩을 통해 마케팅과 연계된 프로모션의 중요성을 인지할 수 있습니다.
상품 할인과 쿠폰 할인(상품 쿠폰, 장바구니 쿠폰)의 구분은 커머스에서 혜택을 설계할 때나 손익을 계산할 떄 때 그리고 심지어 프로덕트 애널리틱스에서 이벤트/프로퍼티의 택소노미를 설계할 때도 아주 중요한 요소입니다.
앱 설치 쿠폰 및 가입 혜택 프로모션은 Always-on 올웨이즈온 캠페인에 속하고, 홀리데이 프로모션은 팝업/애드훅 캠페인으로 볼 수 있겠죠? (와 쉽다!)
보통 앱 설치, 가입의 경우 장기적인 관점의 KPI 달성을 위해 진행되는 캠페인으로 일간/주간/월간 성과를 지속적으로 모니터링하고요. 팝업/애드훅 캠페인의 경우 정해진 기간 동안 최대 매출 등의 목표치를 달성하는 것이 중요합니다. (무신사의 무진장세일이 매년 역대급 매출을 갱신한다고 하죠...? 그렇지만 무진장 정도면 이제는 정규 캠페인이라고도 볼 수 있겠네요)
CRM 수단으로는 앱 중심의 서비스인 경우 앱푸시, 카카오톡을 위주로 사용하고 웹의 경우 배너/팝업 또한 CRM의 일환으로 볼 수 있겠습니다. 문자 및 이메일은 조금 더 전통적인 수단이겠죠?
CRM 마케팅은 CRM 마케터 직무로도 많이 채용하지만, 그로스마케터의 수행 업무에 수반되는 경우도 꽤 있습니다. 29CM의 그로스 마케터 채용 공고를 보면 '고객 커뮤니케이션 타겟 / 채널 / 메시지 테스트 및 운영' 이라는 워딩을 볼 수 있는데요. 하단처럼 쪼개서 생각할 수 있고, 결국 CRM 마케팅에 대한 내용이라는 것을 알 수 있습니다.
CRM 마케팅이 최근 뜨는 이유는 개인 정보 보호 트렌드 때문인데요. 과거 퍼포먼스마케팅에서는 정교한 타겟팅을 위해 사용자가 웹 내에서 행동했던 것들을 추적하는 (cookie, 쿠키! 한 번쯤은 지워보셨죠?) 것이 중요했는데 이 쿠키 정보의 제공이 중단되면서 일반적인 퍼포먼스마케팅의 효율이 낮아지며 비용이 높아진 것도 일부 원인이 있고요.
상대적으로 CRM은 이미 보유한 회원 모수를 대상으로 메시지를 보내기에, 신규 사용자를 획득하는 것보다 효율이 높고(=비용이 낮고) 운영에 필요한 실 비용이 메시지 발송 비용 정도로 상대적으로 비용이 낮기 때문도 있습니다. CRM마케팅은 기회가 된다면 다음에 좀 더 자세하게 풀어보도록 할게요!
이렇게 패션 플랫폼의 그로스 마케팅 (ft. 무신사, 29CM, W컨셉)을 광고 소재와 채용 공고, 프로덕트를 통해서 Acquisition과 Retention 위주로 알아봤습니다.
[다른 글 보러 가기]
그로스마케팅과 AARRR 퍼널 분석 (ft. 29CM)
https://brunch.co.kr/@marketer-emje/11
그로스마케팅이란? 콘텐츠도 퍼포먼스도 UIUX개선도!
https://brunch.co.kr/@marketer-emje/10
그로스마케팅과 AARRR:Acquisition 획득
https://brunch.co.kr/@marketer-emje/13
풀스택 마케팅 컨설팅펌 마티니아이오
July 2, 2024
블로그나 서비스를 운영하다 보면 내 게시물이나 제품이 자연스럽게 Google 또는 Naver 검색 결과에 노출되길 기대하게 됩니다.
이러한 관점에서 접근하는 방법이 Search Engine Optimization(SEO)입니다.
Google과 Naver 모두 자체 검색 엔진에서 노출되는 다양한 방법과 데이터를 제공합니다. 이는 각각 Google Search Console과 Naver Webmaster Tools입니다.
그 중 Google에서 제공하는 Google Search Console은 키워드 노출, 클릭 수, 순위 등 유용한 정보를 제공하지만, 여전히 복잡한 정보를 얻기에는 어려움이 있습니다.
저 또한 블로그를 운영하면서 Google Search Console을 자주 방문하고 관찰하지만, 이러한 점이 아쉬워 복잡한 데이터를 확인할 수 있는 대시보드를 만들었습니다.
1️. 좌측 하단의 구글서치콘솔 변경 시 내 데이터를 확인할 수 있습니다.
2️. 노출도에 따른 키워드 그룹을 두어서 그룹간 관리가 용이합니다.
3️. 새롭게 등장하는 키워드를 파악할 수 있습니다.
4️. 기간, 기기, 국가에 따라 다양한 지표 변화를 빠르게 확인할 수 있습니다.
July 1, 2024
GA4는 유저가 수행한 행동 기반의 분석을 할 수 있게 도와주는 솔루션입니다. 기존의 세션 기반으로 획득관점의 유저분석을 목표로 했던 UA의 단점을 보완하는 업데이트였습니다. 다만, 기본적으로 제공하는 대시보드가 UA 대비 친절하지 않다보니 GA4로 넘어가는 많은 마케터분들과 분석가분들이 어려워하는 경우가 많았습니다.
이러한 단점을 보완하기위해 GA4의 데이터 + UA의 UI를 합친 루커스튜디오 대시보드를 만들었습니다.
퍼포먼스 마케팅을 처음 시작했을 때, Google Analytics(GA)는 제가 처음 접한 주요 도구 중 하나였습니다. 처음에는 기능이 많아 어색하고 어려웠지만, UA는 곧 필수적인 도구가 되었습니다. 잘 구성된 메뉴와 사용자 인터페이스(UI) 덕분에 쉽게 탐색하고 데이터를 분석할 수 있었습니다.
UA는 사용자, 획득, 행동, 전환의 네 가지 주요 영역으로 주제가 나뉘어 있어 분석이 매우 간단했습니다. 이러한 구조 덕분에 메뉴 순서에 따라 데이터를 분석함으로써 비즈니스 현상을 이해하기가 쉬웠습니다.
GA4는 UA의 획득 관점에 초점을 맞춘 세션 기반 분석에서 행동 기반 분석 방식으로 데이터 구조를 크게 변경하였습니다. 이러한 변화는 UA의 데이터 단점을 보완했습니다. 그러나 GA4의 메뉴가 UA처럼 주제별로 명확하게 구분되어 있지 않다는 점은 다소 아쉬웠습니다.
두 가지 장점을 결합한 대시보드이러한 문제를 극복하기 위해 UA의 분석 섹션과 GA4의 이벤트 수준 분석을 결합한 대시보드를 만들었습니다. 이 대시보드는 UA의 익숙한 UI를 유지하면서 GA4의 고급 분석 기능을 활용합니다.
July 1, 2024
구글 애널리틱스와 앰플리튜드의 기능, 추적 방식, 분석 항목, 의의와 장단점, 담당자를 비교하자면 하단과 같습니다. 해당 내용의 이해를 위해 차근히 퍼포먼스마케터, 그로스마케터의 직무 요건에서부터 왜 애널리틱스가 중요한지(GA든 Amplitude든) 알아보도록 하겠습니다.
마케터로 생각하는 직무는 주로 퍼포먼스 마케터일 것입니다. 퍼포먼스마케터, 소위 퍼포마는 브랜드나 대행사(에이전시)에서 마케팅 전략을 수립하고 미디어믹스를 짜고 (매체 별/광고 상품 별로 얼마나 쓸 건지를 짜는 것) 이후 해당 미디어믹스에 따라 광고를 집행한 후에 광고 성과를 관리합니다.
그렇다면 퍼포마의 채용 공고를 분석해 보겠습니다. 퍼포먼스 마케터의 직무 요건 및 우대 사항에는 Google Analytics와 Amplitude가 꽤 자주 등장합니다. 심지어 데이터 분석가 직무에도 있네요. 왜일까요?
한 건의 전환이 일어나기까지, 한 명의 사용자에게 노출되는 광고는 수도 없이 많습니다. 마케팅을 열심히 할수록 그렇습니다. 사용자가 1) 인스타그램 광고도 볼 거고, 2) 유튜브 콘텐츠를 봤을 수도 있고, 3) 카카오 배너 광고를 봤을 수도 있고, 4) 네이버 검색 광고를 봤을 수도 있습니다. 이렇게 수많은 광고 매체를 거쳐, 한 건의 전환이 일어났을 때 가장 중요한 질문은 무엇일까요?
다수의 광고 매체들은 다 자기가 기여를 했다고 말합니다. 그래서 광고 관리자로만 광고 성과를 보면 과도하게 성과가 집계될 수밖에 없고, 중복 집계될 수밖에 없는 것입니다.
일주일 안에 저 광고 매체들에 다 노출되었던 사용자가 전환을 했다고 가정해 볼까요? 그렇다면 기여 기간은 7일인 것이고 (광고 매체의 성과를 인정해 주는 기간) 노출된 매체는 4개, 그중 유상(Paid) 광고 매체 3개입니다. (유튜브 콘텐츠는 자사의 브랜딩이었다고 하면요.)
그럼 그중 누가 이 전환의 성과를 가져갈까요?
이렇게 광고 성과의 기여값을 보다 정확하게 측정하기 위해서 Attribution Tool(어트리뷰션툴), Analytics(애널리틱스)가 존재합니다. Web Analytics로 가장 유명한 것이 구글 애널리틱스인 것이고요.
글의 초반 앰플리튜드 vs 구글애널리틱스 비교표에서 언급했었죠. 구글 애널리틱스는 이처럼 광고 매체들의 전환값의 기여도를 측정하여 마케팅을 효율화하는 것을 목적으로 많이 활용합니다.
여기서 또 하나 짚어야 할 것이 있습니다. 그 광고, 클릭하면 어디로 가나요? 클릭해서 이동한 페이지에서 보통 전환이 일어날 테니까요.
마케팅 캠페인이 '웹'에 치중되어 있을 때는 구글애널리틱스의 시대였습니다. 그렇지만 '앱'이 뜨기 시작하고 앱마케팅이 활성화되면서 구글애널리틱스 또한 한계에 부딪힙니다.
웹으로 랜딩 된 후 구매라는 전환 행동이 일어날 때 구글 애널리틱스는 Last touch 기여 설정에 의해서, 해당 전환의 성과는 '페이스북'에게 있다고 측정했습니다.
그런데 웹 랜딩 이후 앱 설치가 진행되고 앱에서 구매가 일어나면 어떻게 될까요? 사용자의 흔적을 파악할 수 있던 utm (광고 매체의 소스값)이 유실되며 광고 매체의 성과를 잡지 못하고, organic (자연 유입)으로 측정하게 됩니다.
cf. 여기서 utm의 광고 매체 소스값이란...?
구글에 나이키를 검색하면 '스폰서' 광고로 나이키가 뜹니다. 이걸 클릭하면 url이 이렇게 나옵니다.
https://www.nike.com/kr?utm_source=Google&utm_medium=PS&utm_campaign=365DIGITAL_Google_SA_Keyword_Main_PC&cp=72646825390.... > utm_source=Google이라고 알려줍니다. (소스값) utm_medium=PS라고 알려줍니다. (매체) 이 두 개의 조합을 광고 매체의 소스값이라고 합니다.
그래서 앱 마케팅이 중요해질수록 MMP와 PA의 인지도 또한 높아질 수밖에 없습니다. MMP는 Mobile Measurement Partners로 앱스토어에 SDK를 붙여 앱 설치 성과를 측정해 주는 솔루션을 말하고, PA(Product Analytics)는 이러한 MMP들을 연동하여 앱 설치 성과를 분석할 수 있도록 도와줍니다.
서비스가 Web 위주인 경우 구글애널리틱스만 사용해도 충분합니다. 다만 App 위주인 경우 App 설치 성과를 분석하는 MMP (Appsflyer, Adjust, Airbridge 등)와 Web to App을 추적하고, App 내 사용자 행동을 분석하는 PA(Amplitude, Mixpanel 등)가 필요합니다!
풀스택 마케팅 컨설팅펌 마티니아이오
June 28, 2024
그로스마케팅의 기본은 분석입니다. 분석 툴, 주로 Analytics라고 많이 이야기하죠. Google Analytics가 대표적이고요. 이외 Product Analytics라고 했을 때 Mixpanel(믹스패널), Amplitude(앰플리튜드) 등의 솔루션이 있습니다.
프로덕트 분석은 사용자들이 디지털 프로덕트를 쓰는 방식을 이해해보는 것입니다. 사용자의 행동 데이터를 분석하고, 전환 기회를 파악하고, 사용자의 평생 가치(LTV: Long Time Value)를 높이는 경험을 만들어 사용자를 비즈니스의 핵심으로 만듭니다.
프로덕트 분석을 통해 사용자의 실시간 참여 및 행동 데이터를 추적, 시각화, 분석하여 전체 고객 여정(User Journey)을 최적화할 수 있습니다. 사용자의 라이프사이클 모든 단계를 데이터로 확인하여 디지털 경험을 개선하고, 충성도를 확보하고, 비즈니스 성과로 연결하도록 지원합니다.
(사용자 여정 예시) 광고를 클릭하고 ~ 계정을 생성하고(Onboarding Process라고 함) ~ 가입하고 ~ 기능 A를 경험하고 ~ 모바일로 로그인하고 ~ 첫구매를 하고 ~ 기능 B를 경험하고 ~ 기능 C를 경험하고 ~ 앱푸시를 받고 ~ 구독할 것 같은데 ~ A/B 테스트를 경험하고 ~ 파워 유저가 되고 ~ 남에게 추천하고...
위와 같은 사용자 여정 중에서 하기 질문에 앰플리튜드를 통해서 답할 수 있습니다.
프로덕트 분석이라고 하면 거창해 보이지만 실전은 생각보다 단순합니다. 커머스에서 가장 중요한 지표가 무엇일까요? 바로 매출/주문수/객단가/건단가입니다.
매출=주문수X건단가, 매출=주문자수X객단가 개념으로, 결국 '매출'이 가장 중요한데요.
동일한 매출을 기준으로 주문수가 많아지면 건단가가 낮아지고, 건단가가 높아지면 주문수가 적어집니다. 아주 당연한 얘기지만, 이 내용이 무엇과 연관이 있을까요? 바로 물류비입니다.
건단가가 낮아서 주문수가 많아지면 택배 물량이 많아집니다. 물론 합배송이 가능하냐, 물류 체계가 자체 배송이냐 위탁 배송이냐, 물류 센터가 있느냐 등에 따라 상황은 다를 수 있겠지만 대개 커머스는 주문수와 건단가 중 굳이 택한다면, 건단가를 높이고 주문수를 줄이는 것이 좋습니다. (객단가는 유저수와 객단가를 둘 다 올리는 게 좋고요...ㅎㅎ)
*매출, 주문수, 객단가, 건단가 차트 모두 '주문 완료'/'구매 완료'/'결제 완료' 와 같은 이벤트와 '주문 금액'/'구매 금액'/'결제 금액'을 뜻하는 이벤트 프로퍼티가 필수입니다.
*여기서 이벤트와 프로퍼티는 모두 개별적으로 설정되는 것으로 통용되는 단어가 아님을 참조해주세요.
1. Segmentation by 에서 주문 완료 이벤트를 설정해줍니다.
해당 택소노미에서는 total_items_order_completed 가 주문 완료/결제 완료 이벤트입니다.
그리고 by order_total 이라는 이벤트 프로퍼티를 사용하여 값을 표현해줍니다.
2. ...performed by Any Users는 따로 설정하지 않아도 됩니다. (전체 유저의 매출을 보는 것이고, 특정 유저의 행동을 보고자 하는 것이 아니니까요.)
3. ...measured as 에서 'Properties'를 선택하고 Sum of Property Value를 설정합니다.
4. 일자까지 설정해주면 그래프가 구현됩니다!
5. 그래프 하단에는 데이터 테이블이 표 형식으로도 나오고, 이는 CSV로 다운로드 받을 수 있습니다.
주문수는 쉽습니다! ...measured as Sum of Property Value를 Event Property로 바꿔주면 됩니다.
매출이 구매 이벤트의 금액의 총합이었다면, 주문수는 이벤트가 발생한 수이기 때문입니다.
Event Totals로 바꿨는데 그래프가 조금 이상하죠? order_total이라는 주문금액값이 grouped by 필터로 걸려있어서 그렇습니다. 금액값 별로 어떻게 구성되어져있는지 보여주는 거죠. 해당 필터를 지워주면 됩니다.
객단가는 매출/주문자수입니다. 그러므로 매출=주문완료 이벤트(+order_total 프로퍼티)의 PROPSUM (PropertySUM)/주문완료 이벤트의 유니크(사용자수)로 수식을 만들어서 적용하면 됩니다. 즉 객단가는 PROPSUM/UNIQUES입니다.
객단가의 추이를 과거와 비교할 수도 있습니다. Comparing to date range ending _ 여기서 일자를 설정하여 두 개의 그래프로 구현되도록 할 수 있습니다. 과거 일자와 비교하면 그 시점의 유저가 **[Previous]**로 표시되고, 이후 시점의 유저가 All User로 표시됩니다.
건단가는 매출/주문수입니다. 그러므로 주문완료 이벤트의 속성값, 주문액 평균을 확인하면 됩니다. ...measured as Average of Property Value로 설정해줍니다.
건단가는 주로 프로모션을 진행할 때 부차적으로 확인합니다. 평상시 대비 프로모션 진행 시에 카테고리/브랜드/상품/장바구니 할인 쿠폰이 발급되어 건단가가 낮아지는 경우가 많기 때문입니다.
건단가/객단가는 대개 유사합니다. 다만 예외도 존재합니다. 리셀러가 커머스에 많은 경우, 상품을 대량하는 구매하므로 경우 주문수가 주문자수보다 월등히 많아 건단가는 낮고, 객단가는 높을 수 있습니다.
건단가/객단가는 시즈널리티를 탑니다. 특히 의류 커머스의 경우 S/S에는 반팔 티셔츠가 주가 되기에 객단/건단이 낮아지고, F/W에는 아우터 상품이 메인이 되면서 객단/건단이 높아집니다.
대시보드 한 판에 차트들을 모을 수 있습니다. 매출도, 구매전환율도, 상품수도 여러 필터로 쪼개보면서 프로덕트의 현황을 확인할 수 있습니다.
앰플리튜드 차트로 확인한 데이터들은 구글 스프레드시트로 이전 성과들과 비교하거나, 노션으로 정리하거나, 간단하게는 슬랙으로 정리하여 공유합니다.
그로스마케터가프로모션/쿠폰 분석을 하는 과정 중에 앰플리튜드로 세그먼트 차트 (커머스에 꼭 필요한 매출, 주문수, 건단가, 객단가) 그리는 법을 알아보았습니다! 감사합니다.
풀스택 마케팅 컨설팅펌 마티니아이오
June 26, 2024
그로스해킹은 Growth와 Hacking의 조합, 그로스마케팅은 Growth와 Marketing의 조합으로 두 개념 다 '성장'을 위함이지만 해킹은 어떤 수단을 동원할지 한정짓지 않는 것이고 마케팅은 마케팅 측면에 집중한 것입니다.
AARRR 프레임워크가 왜 중요할까요? 그로스마케팅의 범위가 모든 마케팅을 포괄하는 만큼, 업무의 우선순위를 정해야 하기 때문입니다. 비즈니스의 특성, 규모, 성숙도에 따라 AARRR 중 현재 집중해야하는 단계를 파악하고 그 부분을 활성화하기 위한 마케팅 캠페인을 운영해야 합니다.
(1) A: Acquisition 획득
(2) A: Activation 활성화
(3) R: Retention 유지(리텐션)
(4) R: Revenue 수익화(매출)
(5) R: Referral 추천
▶️ AARRR 프레임워크 관련된 더 자세한 글은 여기서 확인해주세요.
https://brunch.co.kr/@marketer-emje/11
AARRR 프레임워크의 첫번째 약자인 Acquisition(획득)을 알아보겠습니다. 사용자 획득을 위한 마케팅을 UA 마케팅 (User Acquisition Marketing)이라고 자주 부르는데요. UA마케팅에서 사용하는 광고 매체, 성과 분석 툴, KPI(유입, 가입, 앱설치, 첫구매 등)에 따라 봐야하는 지표, 실제 사례 등을 공유해보겠습니다.
잡코리아에 'UA마케팅'을 검색했을 때의 결과페이지입니다. 넷마블, 크래프톤 등 유명 게임 회사가 좀 보이고, 이외 앱 중심의 커머스 회사인 브랜디도 있네요. UA 마케팅이란 단어를 게임 업계에서 많이 쓴다고는 하는데요, UA 마케터라는 포지션명은 잘 쓰지 않기 때문에 UA 마케팅을 하는 퍼포먼스마케터로 생각할 수 있겠습니다.
AARRR의 첫 단어인 만큼 '획득'은 마케팅 초기 단계로, 유저(사용자)가 서비스에 '획득'되게 만드는 것입니다. 여기서 획득은 서비스 내에서 정의하기 나름이지만 단순히 유입(Traffic, 트래픽)이 될 수도 있고 유입 이후의 가입(Signup, 등록/계정 생성) 혹은 앱 설치 (App Install) 혹은 첫구매 (1st Purchase)일 수도 있습니다. KPI가 무엇이냐에 따라 주의 깊게 봐야하는 지표 또한 달라집니다.
사용자를 획득하고자 하는 UA 마케팅에서는 주로 어떤 광고 매체를 활용할까요? 힌트는 UA마케팅을 검색했을 시 나오는 퍼포먼스마케터의 채용 공고에 있습니다!
· 글로벌 UA 매체 Self-serve: Google, Meta 등
Self-serve: 광고 대행사를 통한 운영이 아닌 직접 운영을 말합니다.
· 마케팅 성과 분석 툴 활용 역량 (Singular, Appsflyer, Firebase, Gamesight, GA 등)
MMP(Mobile Measurement Partners)인 싱귤러와 앱스플라이어가 등장하네요.
· 1st Party Data 활용을 통한 광고 <> 내부 성과 분석
1st Party Data란 우리 서비스에 쌓이는 데이터를 기반으로, 자사 내부 데이터라고 할 수 있습니다. 이에 반대되는 개념이 3rd Party Data로 외부 데이터로, 광고 매체들의 데이터들을 예시로 들 수 있습니다.
· 광고 매체: 메타, 구글, 네이버 SA/DA, 카카오 등
DA는 Display Advertisement(Ads)로 배너 광고, SA는 Search Advertisement(Ads)로 검색 광고를 뜻합니다.
· 분석 트래킹 툴 활용 통한 데이터 분석 (Appsflyer, GA 등)
MMP(Mobile Measurement Partners)인 앱스플라이어가 등장하네요.
· User Acquisition - Activation 퍼널 단계에서 KPI 달성
그로스마케팅은 그로스(Growth)를 위해 무엇이든 하기에 AARRR 프레임워크의 모든 단계와 관련된 업무를 하지만 주로 퍼포먼스마케팅은 AARRR 중의 초기 단계인 Acquisition과 Activation 위주의 업무를 합니다.
· 주요 매체 (Google, NAver, Meta, Kakao) Self-Serve
(*Self-serve: 광고 대행사를 통한 운영이 아닌 직접 운영을 말합니다.)
· 3rd + 1st Party 데이터 분석을 통한 UA 성과 관리
1st Party Data란 우리 서비스에 쌓이는 데이터를 기반으로, 자사 내부 데이터라고 할 수 있습니다. 이에 반대되는 개념이 3rd Party Data로 외부 데이터로, 광고 매체들의 데이터들을 예시로 들 수 있습니다.
보통의 광고 매체(3rd Party)에서는 자신의 매체를 기준으로 성과를 측정하기 때문에 내부 데이터(1st Party)와 수치가 맞지 않는 경우가 많습니다.
ex. 사용자가 3일 전 인스타 배너 광고를 보고 클릭해서 유입되었다가 이탈된 후 다시 네이버 검색 광고를 통해 오늘 유입되어 가입한 경우를 생각해봅시다. 기여기간이 7일이라고 할 때, 인스타그램 및 네이버 매체의 광고 관리자에서 해당 가입이 모두 각자의 성과라고 계수할 수 있습니다. 이렇게 되면 광고 관리자에서 확인된(3rd Party) 가입자 수치는 2명이고, 실제 내부 데이터(1st Party)에서는 1명이겠죠?
'지표'는 특정 현상을 나타내는 수치입니다. 쉽게 말하면 클릭률(CTR:Click-Through Rate)), 클릭당비용(CPC:Cost Per Click), CPM(노출당비용), CPI(설치당비용), PV(페이지뷰), CAC(가입당비용).. 이런 것들 인데요. 배너 광고 및 검색 광고의 효율을 판단할 때 지표들을 기준으로 성과가 좋다/나쁘다를 이야기할 수 있습니다.
지표를 AARRR 프레임워크에 맞추어 구분하고 확인할 수도 있습니다.
Acquisition 관련 대표 지표들
액션을 무엇으로 설정해두었느냐에 따라 달라집니다.
보통 유입/트래픽 캠페인은 일회성 모수인 경우가 많아 (즉 사용자가 서비스를 장기적으로 사용하지 않고 유입만 되었다가 이탈하는 경우) 커머스에서는 가입 및 첫구매를 독려하고, 앱의 중요도가 큰 경우는 앱설치까지 유도하는 경우가 많습니다.
그로스해킹과 그로스마케팅 그리고 그로스마케팅에서의 AARRR 프레임워크 개념을 넘어서 이제는 조금 더 구체적으로 Acquisition 단계의 UA마케팅에 대해서 다뤄봤습니다. 광고 매체나 성과 분석 툴의 경우는 다른 단계에서도 크게 달라지지 않지만 그만큼 중요한 내용이기에 계속 이야기하겠습니다!
풀스택 마케팅 컨설팅펌 마티니아이오
June 25, 2024
퍼포먼스 마케팅에서는 다양한 최적화 전략을 사용하여 목표를 달성할 수 있습니다. 특히, 머신러닝이 주요하게 작용하는 상품들은 최적화를 무엇을 적용하느냐에 따라 성과 결과가 다르게 나타나는데요. 오늘은 매출 증대를 위한 최적화 2가지에 대해 얘기해보고자 합니다. 구매 최적화와 ROAS 최적화. 이 두 최적화는 매출 증대의 목적으로 운영되긴 하지만, 분명한 차이가 존재합니다. 간단하지만, 각 최적화별 정의와 차이점, 어떤 상황에 적용하는게 더 효과가 좋을지에 대해 작성해보고자 합니다.
구매 최적화는 구매 이벤트 최적화, 즉 광고 캠페인을 통해 직접적인 구매 전환을 최대화 하는 것을 목표로 하며, 주로 비용 효율 보다는 구매 자체에 집중합니다. 흔히 알고 있는 이벤트 최적화이며, 이벤트들 중 구매 이벤트 발생에 집중하여, 머신러닝 합니다.
ROAS 최적화는 광고 비용 대비 매출 최대화 하는 것을 목표로 하며, 효율적인 비용 관리와 최대 매출 포커싱하여 최적화 합니다.
ROAS는 위와 같이 계산하며, ROAS은 두 최적화 모두 산출 가능하지만, ROAS 최적화는 ROAS에 보다 집중하여 머신 학습이 진행되는 것을 의미합니다.
구매 최적화는 많은 구매 이벤트를 발생 시키는 것을 목적으로 머신러닝이 작동하여, 상대적으로 객단가가 낮은 상품 운영에 보다 적합하며, ROAS 최적화 대비 더 많은 유저들의 구매를 기대할 수 있습니다.
또한 높은 LTV가 기대되는 산업/제품군의 경우, 구매 최적화 활용이 긍정적입니다.
초기 CPA가 다소 높을 수 있지만, 산업/서비스 특성상 반복 구매를 통한 높은 수익 창출이 가능하여, 구매 최적화를 통해 구매를 이끌어 내는 것이 중요합니다.
ROAS 최적화는 광고비가 제한적이거나 특정 ROI 목표가 있을 때, 주로 적용합니다. 구매 금액에 포커싱하여 학습하여, 비교적 구매 객단가가 높거나, 한명의 유저가 다양한 상품을 구매할 수 있는 경우에 ROAS 최적화가 적합합니다.
특히 게임 업종에서 고래 유저라는 용어를 사용하는데, 고래 유저란 일반 사용자에 비해 높은 구매력을 가지고 있으며, 한번의 결제로도 큰 금액을 소비하는 유저를 의미합니다. 장르별로 고래 유저의 비중은 다르지면, 평균적으로 1%미만, 구매 금액은 과반 내외를 차지합니다. 쇼핑 업종에서는 VVIP라고도 하는 이 고객들은 한번의 구매로도 높은 수익을 창출하여, ROAS 최적화는 이들을 타겟하여 머신 학습 진행하여 상대적으로 적은 광고 비용으로도 높은 매출을 기대할 수 있습니다.
정액제/구독형과 같은 서비스에는 ROAS 최적화 적용에 부적합 합니다.
물론 앞서 말한 상황별 예시가 100% 정답은 아닙니다. 게임 업종이라도, 구매 객단가가 낮은 편이거나, 매칭을 위한 많은 유저가 필요한 경우에는 구매 최적화 상품이 게임에는 더 적합할 수 있습니다. 예산의 여유가 있고, 가설을 테스트해보고자 한다면, 각 최적화별 A/B테스트도 하나의 방안입니다.
캠페인 성과에는 최적화 방식 뿐만 아니라, 타겟에게 소구할 메세지, 크리에이티브의 품질, 어떤 매체를 활용할지, 지면별 경쟁 상황, 시즈널리티 등 다양한 요소들이 작용합니다. 적합한 최적화를 선택하는 것은 성공적인 캠페인을 위한 하나의 옵션이지만, 각 특성을 고려하여 시행착오를 줄이고, 상황에 맞게 적용하여 우수한 성과를 거둘 수 있습니다.
June 24, 2024
데이터를 다루다보니 링크드인 컨텐츠도 데이터로 관리하고 싶은 마음이 컸습니다.
링크드인에서 가장 많이 들어가는 항목이 통계 부분인데 들어갈때마다 아쉬운건 제공 되는 데이터가 너무 제한적이라는 것이었습니다.
링크드인이 제공해주지 않아서 직접만들어 봤습니다.
1️. 평균/누적 컨텐츠 노출, 참여도(좋아요, 댓글), 팔로워에 대해서 알 수 있습니다.
2️. 노출, 참여도, 팔로워에 긍정적인 컨텐츠 종류를 확인할 수 있습니다.
3️. 컨텐츠 개별 누적 지표와 계정 지표를 분리해서 볼 수 있습니다.
링크드인이 제공하는 API가 페이지 데이터다 보니 개인용 컨텐츠에 대한 통계를 자동화 하지 못한 게 아쉽긴 하지만 주기적으로 데이터를 다운받아서 스프레드시트에 올리기만 하면 자동으로 시각화에 업데이트가 되게 했습니다.
+ Social Selling Index (SSI)와 같은 지표를 추가하면 좋을 것 같아 점진적으로 추가할 계획입니다.
+ 각 콘텐츠 유형에 대한 레이블을 추가하여 분석을 다양화하려고 합니다.
+ 링크에서 썸네일 이미지 자동으로 가져올 수 있게 하는 방법 없을까요?! 고민중입니다.