
December 11, 2025

데이터를 분석하다 보면 ‘이 질문에 답하려면 어떤 차트를 만들어야 할까?’라는 고민을 자주 하게 됩니다. 앰플리튜드(Amplitude)는 이러한 고민을 덜어주기 위해 Ask Amplitude를 선보였습니다.
Ask Amplitude는 사용자가 자연어로 질문을 입력하면, 곧바로 적합한 차트를 생성하고 인사이트를 제공합니다. 지금부터 Ask Amplitude를 실무에서 어떻게 활용할 수 있는지, 구체적인 사례를 통해 살펴보겠습니다.

행동 데이터의 핵심 가치는 질문에 답하고, 의사 결정에 필요한 인사이트를 도출하는 데 있습니다. 그러나 지금까지 앰플리튜드를 사용하는 많은 사용자들은 제품 UI에서 차트를 단계별로 직접 구성해야 했습니다.
이제 Ask Amplitude를 통해 이러한 복잡한 차트 작성 과정을 대폭 간소화할 수 있습니다. 여러 단계를 거쳐 차트를 구성할 필요 없이, 아래 예시처럼 궁금한 내용을 질문 형태로 입력하기만 하면 됩니다.
Ask Amplitude는 질문을 이해하고, 적절한 차트 유형과 이벤트, 속성을 자동으로 선택해 결과를 보여줍니다. Amplitude AI Agent 기능과 함께 활용하면, 데이터 분석에 필요한 시간과 노력을 크게 줄일 수 있습니다.
Ask Amplitude는 데이터팀에 의존하지 않고도 누구나 스스로 데이터를 탐색할 수 있도록 설계되었습니다. 단순히 질문에 답하는 AI가 아니라, 실무자가 제품 데이터를 직접 활용할 수 있도록 돕습니다.

예를 들어 ‘사용자 가입부터 노래 또는 영상 구매까지의 퍼널 전환율은 어떻게 되나요?’라고 질문했다고 가정해 보겠습니다.
Ask Amplitude는 전환율 수치만 제공하는 데서 그치지 않고, A/B 테스트 가입 그룹별로 데이터를 분할하고, 전날 대비 지표를 비교하며, 첫 단계에서 안드로이드(Android)와 iOS 플랫폼만 필터링하는 방법까지 함께 보여줍니다.
또한 자연어 기반으로 데이터 분석을 구성할 수 있게 되면서, 실무자가 필요한 시점에 직접 서비스 데이터를 분석하고 인사이트를 도출할 수 있게 되었습니다. 이렇게 생성된 차트는 단순한 보고용 결과가 아니라, 실무자가 스스로 지식을 쌓고 다음 질문에 주도적으로 답할 수 있는 토대가 됩니다.

편리함만을 이유로 AI가 차트를 무분별하게 생성하게 두면 문제가 발생할 수 있습니다. 비슷한 내용의 차트가 여러 개가 있으면, 오히려 어떤 차트를 신뢰해야 할지 판단하기 어려워지기 때문입니다.
Ask Amplitude는 시맨틱 검색을 활용해 이러한 문제를 방지합니다. 새로운 차트를 만들기 전에 먼저 앰플리튜드 내에 이미 존재하는 콘텐츠를 검색하고, 동료들이 만들고 검증한 차트 중 유사한 것이 있는지부터 확인합니다.
이러한 검색 기법은 ‘스트리밍된 비디오 시간’과 ‘총 시청 시간’처럼 표현은 다르지만 같은 의미를 가진 용어까지 인식합니다. 덕분에 사용자는 대부분의 경우 새로운 차트를 추가로 생성하지 않고도 필요한 콘텐츠를 찾을 수 있으며, 앰플리튜드 내 콘텐츠의 품질과 신뢰도를 함께 유지할 수 있습니다.
마티니는 앰플리튜드를 활용해 고객사가 데이터에서 인사이트를 얻고, 더 나은 의사결정을 할 수 있도록 돕고 있습니다. 데이터 환경을 구축하고 마케팅 성과를 높이고 싶다면, 지금 바로 마티니와 만나보세요.

December 9, 2025


이제 브레이즈에서 RFM 세그멘테이션을 활용할 수 있게 되었습니다.
RFM 세그멘테이션은 최근성(Recency), 빈도(Frequency), 금액(Monetary)를 기준으로 각 지표를 스코어링하고, 점수별 유저 그룹의 특성을 정의하는 세그멘테이션 방식입니다.
브레이즈의 SQL Segment Extension에서 사전 정의된 템플릿을 활용해 간편하게 사용할 수 있습니다.
RFM 세그먼트에 대한 상세한 내용은 마티니의 RFM 분석 사례 아티클에서도 확인해보실 수 있습니다.

*쿼리문에서 일부 데이터를 조정하여 기준을 변경하는 것도 가능합니다.

Custom Attribute별로 각 데이터가 차지하는 비중을 확인할 수 있는 기능이 생겼습니다.
예를 들어, ‘멤버십’ 정보를 저장한 Custom Attribute에 각 멤버십 등급별 비중을 확인하거나, 유저가 ‘구매한 카테고리 리스트’에 가장 많이 담긴 카테고리 비중을 확인하는 등의 인사이트 확인이 가능합니다.
다만, 25만 명 이상으로 유저수가 큰 경우, 샘플링된 데이터로 제공되어 실제와 오차가 발생할 수 있는 점 참고가 필요합니다.

Data Settings > Custom Attribute 메뉴로 진입하여 보고 싶은 데이터의 우측 메뉴에서 View Usage 버튼을 눌러 확인할 수 있습니다.

November 3, 2025


지난 BrazeAI 신규 기능 소개에서 BrazeAI Decisioning Studio™를 소개드렸었습니다. BrazeAI Decisioning Studio™는 유저 행동 데이터를 바탕으로 적합한 메시지, 발송시간, 개인화 등 CRM 메시지에 필요한 모든 요소를 스스로 의사결정하는 신규 기능입니다.
AI가 직접 의사결정을 내림에 따라 A/B 테스팅, 개인화 구현, 목표 최적화 등에 들이는 시간을 최소화하고, 더 높은 성과까지 기대할 수 있습니다.
이번 릴리즈 노트에는 BrazeAI Decisioning Studio™를 사용하기 위한 가이드 문서가 업데이트되었습니다. 가이드 문서에는 연동, 에이전트 활용, 리포트 확인 관련 내용이 추가되었으며, 링크에서 확인하실 수 있습니다.
앞으로 AI를 활용한 CRM 마케팅이 마케터의 업무와 필요 역량에 큰 변화를 가져올 것으로 예상되니, 미리 파악해두시면 좋을 것 같습니다.

올해 브레이즈는 WhatsApp을 비롯하여 RCS, Line등 신규 채널 추가에 힘쓰고 있습니다. 이번 업데이트에서는 새롭게 추가된 RCS, Line에 대한 클릭, 발송 등 메시지 상호작용 관련 데이터도 Currents로 데이터를 전송할 수 있도록 추가되었습니다.
특히, 한국에서는 문자 대비 비용 효율이 좋고, 보다 양방향 소통이 가능한 채널인 RCS 활용량이 증가할 것으로 기대되는데요. 브레이즈에서 RCS가 신규 기능으로 출시되고 그에 대한 데이터 연결까지 수월해져, 브레이즈를 통한 RCS 메시지가 더욱 중요해질 것 같습니다.

CRM 마케터라면 모든 캠페인에 매 번 필터링으로 특정 유저들을 타겟에서 제외하거나, Frequency에 대한 고민을 가진 경험이 있으실텐데요. 이제는 Suppression List를 활용하여 편리하게 이 고민을 해결할 수 있습니다.
Suppression List는 특정한 세그먼트를 설정하여, 해당 세그먼트는 아무런 메시지도 받지 않도록 하는 기능입니다. 기존의 베타버전에서 General Access 버전으로 정식 출시되었습니다.
Suppresion List에 특정 유저들을 의도적으로 메시지 수신 대상에서 제외하거나, 메시지의 노이지함을 막기 위해 N일 내 메시지 열어본 사람을 대상에서 제외하는 등 다양한 조건을 적용할 수 있습니다.
제로카피 개인화(Zero-copy Personalization)는 별도로 브레이즈 내에 데이터 수집 과정을 거치지 않고 즉시 개인화에 데이터를 사용하는 방법입니다. 데이터 수집 과정이 없기 때문에 개발의 편리함도 챙길 수 있고, 동시에 Datapoint나 보안 문제 등으로부터 상대적으로 자유로워질 수 있습니다.
이제 브레이즈 캔버스(Canvas)에서 CDI(Cloud Data Ingestion)를 이용하여 DW에 수집된 데이터를 브레이즈로 보내어 데이터 저장 없이 개인화에 사용할 수 있습니다.
아직은 얼리 액세스 단계로, 사용을 위해서는 리셀러를 통해 오픈 요청을 해야하는 단계이며, 상세한 사용 방법은 링크를 통해 확인하실 수 있습니다.

September 9, 2024


행사명 : 데이터 기반 고객 여정 설계를 위한 CRM과 PA 연계 전략 세미나
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 9월 25일 수요일 오후 4시 ~ 6시
대상


2024년 9월 25일 수요일 오후 4시 마티니, 앰플리튜드, 원시그널이 함께하는 세미나에서각 솔루션의 활용 사례와 고객 경험을 최적화할 수 있는 PA & CRM 솔루션 연계 활용법을 알려드립니다.
이번 세미나에서 PA 및 CRM 솔루션 활용 사례를 확인하고 비즈니스에 직접 적용할 수 있는 과정들을 살펴보세요.


16:05 ~ 16:30
[앰플리튜드 세션] 이재철 연사
앰플리튜드 국내 활용사례
16:30 ~ 16:55
[원시그널 세션] 서영진 연사
원시그널 글로벌 활용사례
16:55 ~ 17:20
[마티니 세션] 이건희 연사
CRM 자동화 & PA 솔루션 시너지 발휘하기
세션 이후에는 자유로운 네트워킹과 QnA를 할 수 있는 시간이 마련되어있어 솔루션 연계 활용 및 PA와 CRM 솔루션 도입 관련해서 고민을 나누고 소통할 수 있습니다.

- 신청 시 회사 이메일이 아닐 경우 등록이 제한될 수 있습니다.
- 자리가 한정되어 있어 별도로 선정 안내를 드릴 예정입니다.
- 주차권 제공 가능하며 리셉션 데스크 문의바랍니다.
- 참석자분들에게 간단한 음식이 제공됩니다.
- 문의사항은 mkt@martinee.io 로 문의바랍니다.


September 9, 2024
분석 데이터의 하위 집합입니다.
사용자, 세션, 이벤트 데이터를 분리해서 세그먼트를 정의하면 분석하고자 하는 대상을 쉽게 정의할 수 있게 만드는 기능입니다.
세그먼트를 정의하게 되면 특정 유저의 그룹 vs 나머지 유저의 특징을 비교 분석해 볼 수 있습니다.
GA4에서 세그먼트 기능을 통해 웬만한 유저들의 특징을 잡아낼 수 있습니다.
그런데 GA4가 어떻게 유저들의 행동 데이터를 수집하고 활용하는지 제대로 알지 못하면 활용하기 힘들겠죠?
이번 글에서는 큰 틀에서 GA4가 어떤 원리로 조건이 설정되는지 알아보려고 합니다.
세그먼트 생성화면을 들여다보면 꽤 많은 조건들을 설정할 수 있는 기능들이 많습니다.
일단 크게 3가지 유형의 세그먼트가 있습니다. (아래 유형에 대한 이해를 잘하셔야 합니다.)
세그먼트 유형 선택은 세그먼트를 조건에 해당하는 결과와 관련이 있는 거라고 생각하시면 이해하시기 쉬울 겁니다.
특히! 각 유형별로 소스 / 매체 선택할 때 주의할 점을 꼭! 숙지하시길 바랍니다!




이렇게 정의는 그럭저럭 이해는 할 수 있지만 역시 예시를 통해 어떻게 데이터가 선택되는지 알아보겠습니다.
특정 유저가 2개의 세션 안에서 몇 가지 이벤트를 발생시켰다고 가정해 보겠습니다.

1. 사용자 세그먼트 예시
사용자 세그먼트 기준으로 구매한 유저를 세그먼트를 만들면 어떻게 데이터가 선택될까요?
총 7개의 이벤트가 모두 선택됩니다. 사용자 기준이니까 조회한 날짜에 있는 이벤트가 모두 포함되기 때문입니다.

2. 세션 세그먼트 예시
최소 한 개의 구매 이벤트가 발생한 모든 세션의 데이터기 때문에 이 기준으로 충족되는 데이터는 purchase(구매) 이벤트가 발생한 session - 2 만 선택됩니다( session - 1 에는 구매 이벤트가 없음)

3. 이벤트 세그먼트 예시
이벤트 기준이면 기준에 맞는 이벤트만 선택한다는 말이기 때문에 session - 2에서 발생한 purchase 이벤트만!! 선택됩니다. 다른 이벤트는 선택 안됩니다!

여기서는 어떤 조건의 유저를 선택할지 셋팅하는 옵션을 선택할 수 있습니다.

여기서 AND, OR 조건을 선택할 수 있는데 회원가입과 구매 이벤트를 발생시킨 유저 선택해 보겠습니다.

그런데 하단에 보면 포함할 조건 그룹 추가라는 버튼이 있습니다.

동일한 방식으로 회원가입과 구매를 한 조건을 설정하면 이렇게 할 수 있죠

즉 하나의 조건 그룹에 회원가입 이벤트와 구매 이벤트를 선택한 것이고 나머지 하나는 두 개의 조건 그룹에 회원가입 이벤트와 구매 이벤트가 각각 설정을 했습니다.
첫 번째 방식과 차이점은 뭘까요? 동일한 결과가 나올까요? 결과는 동일합니다.
???
이게 무슨 말이냐면 그룹 간 영역에서 오른쪽 상단에 보면 사람모양의 드롭다운 버튼이 있습니다.

이걸 클릭하면 조건 범위를 지정할 수 있습니다.
세그먼트 설정할 때랑 동일한 방식이죠? 사용자, 세션, 이벤트 단위로 조건설정이 가능합니다.

세션 및 이벤트 세그먼트에는 조건 지정 범위에 대한 옵션이 더 적습니다. 아래 표는 사용할 수 있는 세그먼트 유형별 조건 범위 간 조합입니다.

다시 예시를 들어볼게요
GA4에서 첫 구매 유저를 따로 이벤트를 개발하지 않으면 특정하기 힘든데 회원가입 후 첫 구매 유저를 세그먼트로 한 번 만들어 보겠습니다.
해당 유저들을 특정하기 위한 필요한 이벤트는 first_visit(첫 방문)과 purchase 이벤트겠죠?
첫 구매 유저를 특정한다고 해도 이를 어떻게 정의하느냐에 따라 결과는 달라집니다! (주의!!)
유저의 행동은 정말 엄청나게 많은 경우의 수로 발생을 하죠.
A유저 : 구매 의사 결정이 빠른 A유저는 동일한 세션 시간 내에서 구매
B유저 : 구매 의사 결정이 느린 B유저는 어제 상품을 처음 둘러보고 내일 구매
이 예시처럼 첫 구매를 동일한 세션 시간내 첫 구매를 한 유저를 특정할 것인지, 세션에 상관없이 첫 구매 유저를 식별한 것인지 정의하기 나름입니다.
첫 구매 유저 세그먼트를 만든다면 어떤 조건을 설정해야 될까요?
사용자 세그먼트를 기준으로 세그먼트를 설정하면 유저의 조건에 해당하지 않는 방문데이터도 포함되게 됩니다.
그러니까 첫 방문 이후 첫 세션에 구매를 하지 않아도 구매를 특정시킨 뒤에 제외 조건을 구매 조건을 2번 이상으로 설정하여 첫 구매한 유저를 식별할 수 있습니다.

그런데 first_visit, 첫 구매 사용자의 방문 데이터만 확인하고자 한다면 사용자 세그먼트가 아닌 세션 세그먼트를 기준으로 동일 세션 내의 조건 범위를 선택하여 세그먼트를 생성해야 합니다.

첫 구매 유저를 모든 세션 범위 조건으로 하여 세그먼트를 생성하고 재구매자(purchase 이벤트가 2번 이상)와 겹치는 부분이 없는지 세그먼트 중복 기능을 활용해 벤다이어그램으로 확인해 보겠습니다.

중복 없이 잘 나뉘었습니다. 이런 식으로 내가 가진 유저의 특징을 세그먼트로 만들어서 비교해 보는 과정이 굉장히 중요한 것 같습니다.
이 개념을 토대로 한 번 만들어 보시면 좋을 것 같습니다.
GA의 세그먼트는 생각보다 할 수 있는 게 많긴 합니다.
하지만 제대로 활용하기 위해서는 위에 설명한 개념들이 잘 정리가 되어 있어야 됩니다.
이번 글을 쓰면서 느낀 건 솔직히 GA4는 사실 Amplitude를 사용해 봤다면 이런게 다 있나 싶을 정도로 불편하고... 뭔가 찜찜한 느낌을 지울 수 없었습니다.
이번 글에서 첫 구매 유저 세그먼트를 예시로 들었는데 GA4에서 First time purchases라는 측정항목이 존재하긴 하지만
이를 세그먼트로 활용은 못합니다... 약간 독립적인 측정항목 같은 느낌입니다.
Amplitude에서는 사실 아주 간단하게 첫 구매 유저를 특정할 수 있는 Historical Count 기능이 있어서.. 아쉬웠습니다.
(물론 제약 조건은 있습니다. 날짜 범위가 시작되기 전 최대 1년까지 기간만 포함됩니다. 그래도 이건 혁명적인 기능!)

본질적으로 GA의 목적은 유저 획득에 초점을 맞춰져 있다면 Amplitude는 Product Analytics 툴로 사용자 행동 분석에 초점이 맞춰져 있긴 합니다. 그래서 목적에 맞지 않아서 해당 기능 개발을 하지 않은 건가 싶기도 합니다.
당장 앰플리튜드를 도입하지 않을 거라면 속 편하게 GA4에서 First Purchase 이벤트 개발을 요청하거나 혹은 일단 소개드린 방식대로 우선 트렌드만 확인하는 용도로 세그먼트를 생성해서 데이터를 분석하시는 걸 권장드립니다.

September 6, 2024
전 보통 평일 아침에 운동을 하는데, 끝나고 나면 다른 멤버분들과 이야기를 나누게 됩니다. 아무래도 출근 시간이다보니 스몰톡이 직업 쪽으로 흘러갔습니다. [마케팅]을 하고 계신다고 하시더라고요.
반가운 마음에 전 그로스마케팅을 한다 말해더니 모르는 눈치십니다. [퍼포먼스마케팅]을 하시는 거냐 물었더니 그렇다고 합니다. 어떤 매체를 주로 운영하시냐 했더니 말끝을 흐리십니다.
얘기해보니 그 분의 업무는 <인스타그램 계정 육성> 이었습니다. 특정 부문의 콘텐츠만 게재하는 다수의 계정을 생성해서 ~N만의 팔로워를 가진 계정으로 키우고 광고를 받으며 수익화를 하는죠. 즉 [SNS마케팅]이자 [콘텐츠마케팅]이자 [인플루언서 마케팅]입니다. 저 또한 헷갈렸습니다. 이 또한 퍼포먼스 마케팅일까...?
퍼포먼스는 마케팅은 퍼포먼스(Performance)의 실적, 성과라는 뜻에서 파생됩니다. 즉 퍼포먼스 마케팅이란 성과를 확인할 수 있는 마케팅입니다. 성과란 일의 결과를 뜻하고요.
시험을 보고 성적표를 받듯, 마케팅을 하고 이 일에 대한 성적표를 만들 수 있는 것이 퍼포먼스 마케팅입니다. 어떤 요소에서 얼마나 잘했는지에 대해서 수치 기반의 정량적인 기준으로 평가할 수 있는 거죠.



전통적인 마케팅은 주로 ATL (Above The Line)에 속하는 전통적인 매체를 통한 것을 말합니다. TV, 라디오, 옥외 광고, 신문 등이 있겠죠.
이러한 매체들은 몇 명에게 노출되었는지까지는 대략 추산할 수 있지만 실제로 그 중에 몇 명이 어느 정도로 관심을 보였는지를 알 수 없습니다.

즉 TV가 틀어져있는 가구수는 셀 수 있겠지만, 그 가구 내에서 몇 명의 인원이 영상을 보고 있었는지, 다른 일을 하면서 보고 있었는지 아니면 TV 영상에만 집중하고 있었는지, 그래서 TV 광고에 나온 상품을 인지하게 되었는지 상호 작용이 불가능하므로 알기 어렵습니다.
라디오나 옥외광고도 마찬가지로, 라디오가 청취수는 알겠으나 청취수는 청취자수와 일치하지 않고 옥외광고의 경우 그 앞을 지나간 사람들을 추산할 수 있을 뿐입니다. 그러므로 전통적인 마케팅에서의 ATL 매체는 성과를 정확하게 측정하기가 어렵습니다.
그래서 비즈니스에서는 ROI를 묻습니다. 투자금 대비 이익률이죠. (이익-마케팅 비용)/(마케팅 비용)의 수식으로 비용 대비 매출이 아닌 [이익]의 수준을 봅니다.
마케팅에서는 주로 ROAS를 봅니다. (마케팅에 의한 매출)/(마케팅 비용)의 수식입니다. 여기서 주목할 점은 <마케팅에 의한 매출>입니다.
마케팅에 의한 매출 = 마케팅에 의한 성과, 이를 알고 싶었기 때문에 성과(매출)을 측정할 수 있는 퍼포먼스 마케팅이 중요해졌다고 볼 수 있습니다.

특정 브랜드에서 마케팅을 운영한다고 할 때, 사용자는 신규와 기존으로 나눌 수 있습니다. 신규는 우리를 모르는 사람들, 기존은 우리를 아는 사람들로 정의할 수 있겠으나 [안다/모른다]의 상태를 명확하게 구별해줄 수 있는 변인이 필요합니다.
대개 이 상태를 [가입] 행동으로 구분합니다. 즉 이미 우리 브랜드의 회원인 사용자는 기존, 비회원인 사용자는 신규가 되는 것이죠. 이와 같이 신규 사용자를 대상으로 하는 마케팅을 사용자 획득: UA (User Acquisition) 이라고 합니다.
인지도 증대 및 관심 유도에 유효한 [배너 광고]
배너 광고 매체들은 마케터가 아니어도 익숙한 이름들입니다. 말 그대로 '배너'가 노출되어야 하기 때문에 많은 수의 사용자를 확보하고 있는 플랫폼이어야 경쟁력이 있기 때문이죠.
의사결정 및 구매 전환에 유효한 [검색 광고]
A/B 테스트는 원칙적으로 대조군(Control Group)과 실험군(Experimental Group)을 나누어 다른 모든 환경이 동일하다고 할 때, 한 가지의 변인을 다르게 하여 그 변인의 영향도를 실험하는 것입니다.
광고 집행 시, 모든 외부 요인을 통제할 수 없기 때문에 그 부분을 감안하고 광고 셋팅(타겟팅 등)이나 소재를 A/B 테스트 해볼 수 있습니다. 특정 상품의 경우 소재에서 어떤 내용을 강조할지가 주요 테스트 내용이 됩니다. 1. 개발스토리 2. 리뷰 3. USP 4. 가격 등 강조할 수 있을만한 것들을 제일 메인 요소로 활용해보는 것입니다. A/B 테스트는 매우 큰 개념으로 마케팅에서도 매체, 세팅/타겟팅, 소재 기획/제작 등에서 다양하게 적용될 수 있습니다.

1. 인지도 증대 (Awareness)
'트래픽' 캠페인으로도 불립니다. 불특정 다수(오픈타겟, 논타겟)에게 최대한 많은 도달/노출을 이루어 제품의 인지도 향상과 클릭에 의한 유입, 트래픽을 의도합니다.
2. 관심 유도 (Interest)
타겟 세팅 시 관심사를 설정하여, 다른 행동으로 특정 관심사를 가진 것으로 추론되는 사용자들에게 소재를 노출할 수 있습니다. 혹은 관련도가 높은 웹사이트로 노출 위치를 설정할 수 있습니다.
3. 의사 결정 및 구매 전환 (Decision & Action)
구매 의도 있는 상태에서 특정 키워드를 검색했을 시 광고가 노출되거나, 이전에 방문했던 사용자를 대상으로 재방문 등을 유도할 수 있습니다.
배너 광고든 검색 광고든 각 매체를 통해서 광고가 운영이 되면 관심을 가진 사람들이 클릭하여 설정해둔 페이지로 유입됩니다.
이 때, 페이지에 유입된 사용자가 100명이라고 할 때 (이 100명을 정확하게 구분하는 것도 꽤 어려운 일입니다...) 100명이 [배너 광고]를 보고 왔을지 [검색 광고]를 보고 왔을지 [배너 광고]도 보고 [검색 광고]도 보고 왔을지, [배너 광고]만 보고 10일 후에 페이지 주소를 입력해서 들어왔을지...

어떤 채널, 어떤 매체로 들어왔을지 유입 경로를 알고 싶다면 매체에 광고를 세팅할 때 URL에 UTM이라는 변수를 붙여준 후 이를 Google Analytics로 측정해야 합니다.


유상 광고의 경우 모든 광고 매체에서 관리자(Admin) 페이지를 지원하며 성과를 측정하여 보여주는데 굳이 구글 애널리틱스를 봐야하는 이유가 뭘까요?

자사몰에서의 단 한 건의 성과가 메타에서도 성과로 집계하고, 네이버에서도 성과로 집계하고, 구글에서도 성과로 집계될 수 있습니다. 자사몰 데이터 기준 전환 1건이, 광고 관리자 기준 전환 3건이 될 수 있는 것이죠. 그렇기에 매체 별 광고관리자만을 사용해서 성과를 측정하지 않고 웹으로 랜딩되는 경우 구글 애널리틱스(Google Analytics)를 주로 사용하는 것입니다.


광고 매체가 전환에 기여한 기준은 기간과 방식에 따라 달라질 수 있습니다. 기여 기간을 1일로 설정한다면 3일 전 클릭한 성과는 인정되지 않을 수 있습니다. 기여 모델은 라스트 터치, 퍼스트 터치, 멀티 터치 등으로 구분되고 약 일주일 간 광고를 운영했을 때 (메타, 네이버, 구글 등)
- 사용자가 구매하기 전 마지막으로 누른 광고 매체가 가장 크게 기여했다고 한다면 > 라스트 터치 (Last touch) 모델,
- 사용자가 구매하기 전 처음으로 누른 광고 매체가 가장 크게 기여했다고 한다면 > 퍼스트 터치 (First touch) 모델입니다.
그에 따라 MMP(Mobile Measurement Partner)로 통칭되는 Appsflyer, Airbridge, Adjust와 같은 SDK를 붙이는 등의 추가 tracker가 필요합니다.

보통은 이 부분에서 가장 많은 어려움을 겪습니다. GA와 MMP, 여기서 CRM 솔루션(Braze, Insider 등) 이나 PA(Product Analytics: Amplitude, Mixpanel 등) 솔루션까지 쓴다면 솔루션 내의 데이터 정합성을 맞추는 것 등의 관리가 복잡해지기 때문입니다.
마케팅 웹(Web) 캠페인의 성과는 웹페이지로 랜딩되기에 GA만으로도 측정이 수월합니다. 문제는 앱설치를 목표로 앱스토어로 랜딩시키면서 시작됩니다. 그래서 보통 앱 성과 데이터를 측정하기 위핸 MMP (앱스플라이어/Appsflyer, 에어브릿지/Airbridge, 애드저스트/Adjust 등)을 도입하는데요.

위의 데이터파이프라인 예시처럼, 구글 애널리틱스의 웹 데이터 앱스플라이어의 앱 데이터, 기타 광고 매체들의 광고 데이터를 모아 구글 빅쿼리에 적재하고 이를 태블로를 통해서 대시보드로 제작합니다.

다양한 시각적 형태로, 다양한 성과를, 다양한 차원으로 볼 수 있습니다. 커머스의 배너 성과를 볼 수도 있고, 상품/카테고리/브랜드의 매출 성과를 볼 수 도 있고, 광고 성과를 볼 수도 있습니다. 유입된 광고 매체에 따라 유저들의 LTV로 대변되는 충성도가 다른지도 확인할 수 있고요.
처음의 의문으로 돌아가자면, 인스타그램 계정 키우기도 어떤 측면에서는 퍼포먼스 마케팅으로 볼 수 있겠습니다. '측정'이 가능하기 때문입니다. 콘텐츠를 올리면서 올라가는 팔로워수, 피드의 좋아요수 및 댓글수 그리고 릴스의 조회수 등으로 계정의 성장을 숫자로 '측정'할 수 있습니다.
최근 읽은 '순서 파괴'라는 책에서 인상 깊게 읽은 부분이 있습니다. 아마존의 주요 구성원들이 아마존의 일하기 방식에 대해서 쓴 책입니다.
아마존에서는 목표를 설정할 때 아래 다섯 개 요소를 반영한다고 합니다.
이 중 저에게 가장 와닿았던 것은 측정에 관한 것이었습니다.
.png)

September 5, 2024
데이터를 다루면서 고객의 업무 효율을 높이는 것을 도와드리고 있지만, 정작 저의 일에서는 데이터 정리와 효율화는 잘 못하고 있더라고요. 그래서 요즘은 Make와 Zapier를 통해 최대한 많은 일들을 자동화 하면서 좀 더 저의 자유(?) 시간을 만들어가고 있습니다.
👉 Make 자동화 : https://www.make.com/en
그런데 어느순간 Make 자동화가 많아지면서 제가 만들고 운영중인 자동화가 뭔지 헷갈리기 시작했습니다. Make 자동화로 업무효율화를 만들었지만 그럴수록 자동화 솔루션이 정리가 되지 않는 아이러니...
Make에서는 하나의 자동화 과정을 시나리오라고 해서 각 시나리오를 Json 형식으로 저장해서 관리할 수 있습니다. 이러한 Make의 특징을 활용해서 Make에서 시나리오가 새롭게 만들어지거나 업데이트가 되면 각각 구글 드라이브와 노션에 저장 & 업데이트 되는 자동화를 만들어봤습니다.
- 자동화 솔루션 : Make
- DB : Notion, Make DB
- 자료 정리 : 구글 드라이브



1️. Make 어드민의 다양한 시나리오들입니다. 카테고리를 만들 수 있긴하지만 그것만으로는 한번에 어떤게 있는지 확인이 쉽지 않습니다.
2️. Make 자동화 설계 화면 입니다.
3️. Notion에 저장된 최종적인 모습입니다.
👉 업무를 하다보면 고객 리드, 업무 파일, 데일리 보고 등 DB화 & 자료를 정리해야하는 업무들이 빈번하게 있습니다. 해당 시나리오처럼 매번 생산되는 자료를 구글 드라이브와 노션에 자동으로 기록한다면 생각보다 많은 업무를 효율화 할 수 있습니다.

September 4, 2024
Google Analytics를 사용해 보셨다면 ‘세션’이라는 용어에 익숙하실 것입니다. Universal Analytics(GA3)에서는 세션 단위로 데이터를 수집하여 지표를 측정했지만, GA4에서는 데이터 수집 방식이 달라져 주의가 필요합니다. GA4의 세션 관련 지표는 혼란을 일으킬 수 있습니다.
이번 글에서는 세션의 개념을 자세히 살펴보고, GA4에서의 세션이 어떻게 다른지 알아보겠습니다.
세션 관련해서 구글 가이드 문서에 따르면
- 세션은 사용자가 웹사이트 또는 앱과 상호작용하는 기간입니다.
- 세션은 사용자가 앱을 포그라운드에서 열거나 페이지나 화면을 보고 현재 활성화된 세션이 없는 경우 시작됩니다.
- 세션 수 : 고유 세션 ID 수를 추정하여 사이트나 앱에서 발생하는 세션 수를 계산합니다.
예를 들어 유저가 브라우저 탭에서 페이지를 열고 이메일을 확인하거나 다른 일을 하다가 2시간 뒤에 다시 돌아와서 브라우징을 할 수 있겠죠? GA4에서는 이를 페이지 뷰가 있는 세션으로 보고 2시간 뒤에 사용자 참여로 간주하고 새로운 세션으로 기록합니다.
1. 첫 번째 세션:
2. 두 번째 세션:
이때 새로운 세션이 시작되지만 페이지 조회 이벤트는 기록되지 않습니다.→ 두 번째 세션이 사용자 참여로만 기록됩니다
빅쿼리로 실제 어떤 케이스인지 특정 유저의 로그를 한 번 확인 해보겠습니다.

이렇게 페이지뷰 이벤트가 없는 두 번째 세션이 생기며, 이는 참여율(Engagement Rate) 지표로 나타납니다.
참여율 = 참여 세션 수 / 총 세션 수

이런 유저가 많아지면 세션 기반의 지표(예: 세션당 페이지뷰, 세션당 평균 참여시간)가 낮아집니다.
세션당 페이지뷰 수 계산 예시:
페이지뷰 수 / 세션 수 = 10 / 1 = 10
위와 같은 유저의 행동이 늘어나면:
페이지뷰 수 / 세션 수 = 10 / 2 = 5
페이지뷰 이벤트가 포함되지 않은 세션이 발생하니 지표가 감소하게 됩니다.(분모가 커지므로)
따라서 GA3에서 사용하던 세션 기반의 지표는 주의해서 사용해야 하며, 이벤트나 참여 관련 지표(참여 세션)를 보는 것이 좋습니다.
(GA4와 GA3의 데이터 수집 방식도 다릅니다)
자.. 그리고 또 있습니다.
세션 데이터의 현실.. 빅쿼리를 열어보면 .. 더 조심해야겠구나 라는 생각이 들겁니다.
일단 절대 세션수 ≠ session_start 이벤트의 수 가 아닙니다.
왜그런지 직접 조회해보죠!
아래 특정 유저의 세션을 특정해서 조회해봤습니다.
event_name 컬럼에 session_start 이벤트는 없고 다른 이벤트만 있죠?

이런 상황은 빈번하지 않지만 발생할 수 있습니다. 하나의 세션에 두 개의 세션 이벤트가 발생했고, 심지어 사용자 아이디도 다릅니다.
GA4 인터페이스에서는 당연히 단일 세션으로 계산하지 않을 것 같지만 빅쿼리에서는 이런 케이스 때문에 user_pseudo_id와 ga_session_id를 조합해서 각 세션에 대한 고유 식별자를 만들어서 session 을 카운팅 해야됩니다.
concat(user_pseudo_id, (select value.int_value from unnest(event_params) where key = 'ga_session_id')) as session_id,

GA3에서는 세션 윈도우(30분)가 지나면 완전히 새로운 세션이 시작되지만, GA4에서는 기존 세션이 계속 되기 때문에 이렇게 소스가 1개 이상 발생할 수 있습니다.

구글 애널리틱스에서도 세션수를 집계할 때 추정값을 사용합니다.
실제로 빅쿼리에 count(distinct ga_sesssion_id) 를 집계하면 성능에 영향을 줍니다..
그런데 전 세계에서 이걸 조회하는데 이걸 진짜 집계를 ?? 불가능하죠
그래서 HyperLogLog ++ (가이드 링크)라는 알고리즘을 적용해서 추산한 값을 보여줍니다.

실제로 성능을 눈으로 확인해보죠
ga_session_id를 고유하게 카운팅 해보는 쿼리로 비교를 해보겠습니다.
COUNT(DISTINCT ga_session_id)

HLL_COUNT.EXTRACT(HLL_COUNT.INIT(ga_session_id, 14))

차이가 보이시나요? (참고로 데이터 하루치만 조회했고 쿼리 결과는 같습니다)
모든면에서 더 효율적인 처리를 하고 있음을 알 수 있습니다.
사실 GA4에서는 세션이라는 개념은 더 이상 의미가 없고 지금까지 위의 예시를 통해 확인할 수 있었습니다.
그럼에도 세션 지표를 무조건 써야된다면 참여 세션지표를 사용하는게 좋습니다.
이제 이걸 통해서 다음 글에서는 GA4의 꽃 세그먼트 분석에 대해서 알아보겠습니다.
(세그먼트 기능을 쓰려면 세션에 대한 이해가 꼭 필요하기 때문에 이번 글부터 시작하게 되었습니다.)

September 2, 2024
디지털 전환이란 무엇일까요? DT 또는 DX로도 불리는 디지털 전환은 Digital Transformation에서 유래했습니다. 여기서 Transformation, 전환은 상태의 변화를 말합니다. 즉 디지털이 아니던 것이 디지털 상태로 변화하는 것입니다.

디지털 전환, 어쩐지 거창합니다. 마티니의 그로스팀에서 큰 규모의 회사를 방문했을 때 주로 DX실, DT실이 명함에 기재된 경우가 많더라고요. 즉 큰 곳에서 시도하는 경우가 많다는 것이겠죠.

온라인 비즈니스는 진행 중입니다. 오프라인을 온라인으로 전환시키는 DX와 DT는 상당수 진척되었습니다. 평범한 일상만 생각해 봐도 그렇습니다.
즉 현재의 디지털 트랜스포메이션, 디지털 전환(DT, DX)의 주요 과제는 오프라인의 온라인 전환은 아닌 듯합니다.

우리 프로덕트의 사용자가 10명, 100명, 1,000명일 때는 수기가 가능할 수 있습니다. 10명에게는 매일 전화를 할 수도 있을 것이고, 100명에게는 문자를 보낼 수 있을 것이고, 1,000명까지는 어떻게 수기로 그룹화를 해서 카카오톡을 보낼 수도 있겠죠.
하지만 [10,000명] 에게는요? [100,000명] 에게는요? 예를 들어보겠습니다.

[CRM마케팅/수동]
#1 보유한 데이터베이스(DB)에 접근하여
#2 조건에 맞는 쿼리문을 작성하여#3 '고정된 시점'의 사용자 데이터를 추출함
#4 성과 분석 시, 동일 프로세스를 거쳐 특정 시점의 사용자 데이터를 재추출함
#5 엑셀 등을 활용하여 수기로 데이터 값을 비교함
[CRM마케팅/자동] *솔루션 활용
#1 보유한 데이터베이스(DB)를 CRM 솔루션의 클라우드에 연동하고
#2 CRM 솔루션의 어드민에서 변수를 조절하여 (클릭!)
#3 '실시간'으로 사용자 데이터를 추출함
#4 성과 분석 시 어드민에서 변수를 조절하여 (클릭!)
#4 솔루션에서 제공하는 대시보드/그래프 형태로 데이터 값을 비교함

[퍼포먼스마케팅/수동]
#1 광고 매체 별 광고관리자에서 성과를 엑셀로 다운로드 후
#2 보고용으로 맞춰둔 엑셀 형식에 맞춰 복붙 합니다. (ctrl+C, ctrl+V)
*매체 A, 매체 B, 매체 C, 매체 D.... 매체를 많이 쓸수록 이 절차는 많아집니다.
**혹시 글로벌이라면? 국가별로도 쪼개줘야 합니다.
***신규 사용자와 기존 사용자의 리타겟팅을 나눈다고요? 이것도 쪼개서...
#3 매체 성과와 자사 내부 DB 성과의 숫자가 맞지 않습니다.
기여 모델 및 기여 기간의 설정이 다르거나...
[퍼포먼스마케팅/자동]
#1 광고 매체 별 데이터를 연동합니다.
#2 광고 매체와 MMP, CRM 솔루션의 데이터를 통합합니다. (DW)


마케팅 업무 자동화, 마케팅 오토메이션(Automation)의 효율에 대해서 이야기를 종종 하게 되는데요. 업무 효율성을 높이는 것이 수익 상승에 기여하지는 않는단 의견을 종종 듣습니다.
문제 정의와 해결 방안 제시 및 대응. 문제 해결자(problem-solver)라는 직무도 존재하는 것처럼 사실 모든 직업은 분야와 내용과 형식이 다를 뿐, 어떠한 문제를 해결하는 것 아닐까요?
위의 사례로 들었던 CRM 메시지 수신자 추출도, 퍼포먼스마케팅 성과 분석도 고객(사용자)이 아닌 실무자에게 필요한 디지털 전환, 즉 마케팅 자동화의 일환인데요.



여러 기업들의 디지털 전환을 도우면서 가장 기본적이지만 가장 중요했던 것은 바로 '측정'입니다. 웹과 앱에서의 성과 측정을 위해 필수적인 것, 바로 UTM입니다.
웹페이지의 주소인 URL에 UTM 파라미터를 넣어 유입된 사용자들이 어떤 경로로 들어왔는지 파악할 수 있습니다.

보통 퍼포먼스 광고를 운영할 때 페이스북 광고관리자의 구성에 맞추어 캠페인/그룹/소재 단으로 구성하는 경우도 있습니다.

유상 광고(paid media)를 운영하는 퍼포먼스마케팅 외에, 인플루언서 마케팅(earned media)이나 유튜브/인스타그램/블로그 등에 자체 콘텐츠(owned media)를 게재할 때도 UTM을 삽입한 URL을 활용하면 좋습니다!

개인화 추천 시스템: 고객의 과거 구매 내역 및 검색 기록을 바탕으로 맞춤형 제품 추천
챗봇 및 가상 어시스턴트: 고객 문의 및 지원을 자동화하여 실시간으로 대응


고객 세그멘테이션: 고객 데이터를 분석하여 세분화된 마케팅 전략 수립
실시간 데이터 분석: 판매, 트래픽, 재고 등의 데이터를 실시간으로 분석하여 빠른 의사 결정 지원

스케일러블 인프라: 트래픽 변동에 유연하게 대응할 수 있는 클라우드 기반 인프라.
클라우드 기반 CRM: 고객 관계 관리 시스템을 클라우드에서 운영하여 언제 어디서나 접근 가능.

모바일 최적화 웹사이트 및 앱: 모바일 사용자를 위한 최적화된 사용자 경험 제공.
모바일 결제 시스템: 다양한 모바일 결제 옵션 지원.
온라인 및 오프라인 데이터 통합: 고객의 온/오프라인 행동 데이터를 통합하여 일관된 경험 제공.
클라우드 컴퓨팅, 증강 현실 (AR), 사물 인터넷 (IoT), 결제 기술, 로봇 프로세스 자동화 (RPA) 등이 디지털 전환에 필요한 주요 기술로 여겨집니다.
디지털 전환을 검색하면 정말 방대한 의미의 내용들이 나옵니다. 클라우드 컴퓨팅, 인공지능(AI)과 머신러닝(ML), 빅데이터 분석, 사물인터넷(IoT), 블록체인, 사이버 보안 등이 대표되는 단어죠.
생각해 보면 그로스 컨설팅이라고 꼭 디지털 전환이 완료된 상황에서만 될 수 있는 것은 아닙니다. 어느 영역의 디지털 전환이 그로스 컨설팅의 실행 방안이 될 수도 있는 것이죠.
Chat GPT가 생활화되고 AI에 대한 기사가 쏟아지는 요즘이지만, UTM을 잘 쓰는 것도 생각보다 어렵습니다. 디지털 전환을 위해 AI 도입보다 먼저인 것들이 있지 않을까요?

August 30, 2024
B2B 비즈니스를 하다보면 고객 리드를 확보하는 마케팅을 많이합니다. 특히 블로그를 통해 자사 비즈니스의 관심과 이해를 높이면서 자연스럽게 리드를 확보하는 전략을 잘 활용합니다. 마티니도 마찬가지로 다양한 자료들을 블로그와 링크드인 등을 통해 공유 하면서 고객 리드를 자연스럽게 확보하고 있습니다.
처음에는 자료도 많지 않고 리드 인입도 드물어서 고객 리드에 대한 대응이 큰 문제가 없었습니다. 아마 대부분의 B2B 회사처럼 정보성 자료로 고객 리드를 확보하는 경우, 리드가 들어온 것을 확인(인지) 하고 리드의 정보를 확인하고(리드 확인) 고객 세일즈 메일(메일 발송)을 보내면서 자사의 서비스를 알리는 단계를 진행하였습니다.
문제는 리드 수집을 위한 정보성 자료의 수와 경로가 서서히 많아지면서 발생합니다. 어느 수준 이상이되면 고객 리드를 잘 확인하는 것도 쉽지 않습니다. Typeform이나 Googleform을 통해 수집하는 경우 스프레드시트와 Slack으로 리드 수집 현황을 보내주긴 하지만 담당자가 부재하거나 다른일을 하는 경우에는 리드 인지 자체를 놓치는 경우도 존재합니다.
실제로 저희도 리드가 많아지면서 리드 담당자의 업무 부하가 늘고 이에따라 리드 피드백이 늦어지면서 대응이 누락되는 경우가 종종 발생하였습니다.
현재는 해당 과정을 모두 자동화해서 리드 인입부터 리드 고객 정리, 리드 정보 요약, 메일 발송까지 모두 자동화 했습니다.
- 리드 수집 : Featpaper
- 리드 알람 : Slack
- 리드 정보 요약 : Chat GPT
- 리드 DB 정리 : Spreadsheet
- 리드 메일 보내기 : Gmail
- 업무 자동화 : Zapier

1️. 이미지는 B2B 리드 마케팅 프로세스로 마티니의 As-is / To-be 모습입니다. 빨간색 블럭이 자동화된 영역입니다.

2️. Zapier 자동화 설계 화면 입니다.

3️. 리드 획득 후 해당 회사의 정보를 찾아보고 정리하는 것도 생각보다 시간이 많이 듭니다. 해당 프로세스를 Chat GPT를 이용해서 일부 도움을 받을 수 있었습니다. 다만, GPT의 정보 최신정 문제와 정보 신뢰도 문제가 있습니다. 프롬프트 엔지니어링을 통해 정보를 못 찾는 경우 정보가 없다는 결과값을 뱉어낼 수 있게 하였습니다.
🙋♂️ 더 해볼 것 : GPT가 정보를 잘 못 찾는 문제는 Perplexity 같은 URL과 검색 기반으로 정보를 수집하는 AI 솔루션으로 대체하면 어느정도 해결이 가능합니다. 아쉽게도 zapier의 연동 app 목록에는 현재 없어서 추후 Make를 통해 구현할까 생각 중입니다. 더 써보면서 자동화 가능 영역을 찾아 업무 생산성을 높이는 고민을 계속 해보려고 합니다.
👉 자동화 너무 재밌네요. 여러분도 AI와 Automation 사용해서 업무 생산성 높여보세요!

August 30, 2024
이 글을 읽고 계시다면 코호트 분석을 이미 하고 계실 건데 측정 기준에 대해서 의문이 생기신 분이 보실 것 같네요
구글에 '코호트 분석 SQL' 라고 검색하면 정말 많은 글들이 많습니다.
글에서 소개하는 쿼리 예시는 대부분 datediff함수를 활용해서 Date Granularity를 계산합니다.
이해하기 쉽게 예를 들어보겠습니다.
유저 1 : 23:30 에 회원가입 후 다음날 다시 들어왔습니다.
유저 2 : 13:30에 회원가입 후 다음날 다시 들어왔습니다.
day 단위로 계산을 하면 유저 1 은 우리 서비스를 30분 경험하고 다음날 재방문했다고 계산됩니다.
유저 2는 약 10시간 30분 서비스를 경험하고 재방문을 했다고 계산됩니다.
동일한 조건일까요? 그렇지 않죠?
만일 시간 단위로 계산을 하게 되면 특정 행동을 수행한 시간부터 다음 행동까지의 Time window를 24시간 뒤로 하면 이 유저는 다음날이 아닌 모레 재방문했다고 계산되겠죠?
DATEDIFF( [first_event_dt], [second_event], DAY )
DATEDIFF( [first_event_dt], [second_event], HOUR ) / 24 )
월단위로 계산할 때도 마찬가지입니다.
월별 일자수가 모두 다릅니다. 1월(31일), 2월(28일), 4월(30일)...
월 단위로 측정할 때도 30일로 모두 통일해줍니다.
DATEDIFF( [first_event_dt], [second_event], HOUR ) / 24 * 30)
이렇게 계산되면 유저별로 경과 시간은 모두 통일 되었습니다!!
실제로 Amplitude(앰플리튜드)의 코호트 분석 기능에는 이런 기능들이 존재합니다. 만약 안 쓰고 계시다면 직접 쿼리를 날려서...
여기 가이드를 보시면 앰플리튜드가 24시간 단위로 경과 시간을 측청 하는 방식을 설명해 두었습니다.


24시간 윈도우 기준, 캘린더 기준으로 경과 시간(t)을 측정하는 옵션이 있죠?
얼마나 차이를 보였는지 가상의 데이터로 확인을 해보았습니다.
(참고로 더미 데이터는 kaggle 이나 Mockaroo 에서 생성하실 수 있습니다)
참고로 해당 데이터 계산 기준은 월별 첫 구매 기준 재구매율입니다.

t = 1 지점부터 차이를 보이기 시작하는데 t = 0 이 100%라서 차이가 잘 안 보입니다. 로그 스케일을 통해 다시 확인해 보면

확실히 달력 기준의 리텐션율이 조금 더 높아 보이네요
얼마나 차이 나는지 두 기준의 리텐션율을 나눠 보겠습니다 최대 1.27배까지 납니다. (아래 차트에서는 0은 무시합니다. t = 0 은 100%이기 때문에)
t = 1 : 1.15배
t = 22 : 1.27배

데이터에 따라서 차이가 달라지겠지만
코호트의 기준이 만일 회원가입일 기준의 재구매율이거나 회원가입일 기준 재방문율을 측정한다면 더 많은 차이를 보일 수 있을 걸로 예상됩니다.
제가 사용한 쿼리는 아래와 같습니다.
WITH tb_pay_first AS (
SELECT country
,user_id
,min(pay_datetime_id) first_pay_datetime_id
FROM order
GROUP BY 1,2
)
, tb_base_ AS (SELECT st0.*
, FLOOR(TIMESTAMPDIFF(HOUR, st1.first_pay_datetime_id, st0.pay_datetime_id) / 24) AS days_since_first_pay
, FLOOR(TIMESTAMPDIFF(HOUR, st1.first_pay_datetime_id, st0.pay_datetime_id) / (24 * 30)) AS months_since_first_pay_period_24h
, (YEAR(pay_datetime_id) - YEAR(first_pay_datetime_id)) * 12 + (MONTH(pay_datetime_id) - MONTH(first_pay_datetime_id)) AS months_since_first_pay_period_day
, st1.first_pay_datetime_id
FROM order st0
LEFT JOIN tb_pay_first st1
ON st0.user_id = st1.user_id
AND st0.country = st1.country
WHERE 1 = 1
)
, tb_base_24h AS (
SELECT time_id_
, country
, since_time_period_24h
, CASE
WHEN 'acc' = 'normal' THEN SUM(SUM(IF(since_time_period_24h = max_since_time_period_24h, repurchase_user_cnt, 0))) OVER
(PARTITION BY time_id_, country ORDER BY since_time_period_24h DESC RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
ELSE SUM(repurchase_user_cnt)
END AS repurchase_user_cnt
, count(1) pay_user_cnt
, sum(sales) AS sales
FROM (SELECT *
, CASE WHEN since_time_period_24h = 0 AND pay_cnt > 1 THEN 1
WHEN since_time_period_24h = 0 AND pay_cnt <= 1 THEN 0
ELSE 1
END AS repurchase_user_cnt
, MAX(since_time_period_24h) OVER (PARTITION BY country, user_id) as max_since_time_period_24h
FROM
(SELECT tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_24h
, tmp0.user_id
, SUM(tmp0.pay_cnt) AS pay_cnt
, SUM(tmp0.sales) AS sales
FROM
(SELECT DATE_FORMAT(first_pay_datetime_id ,'%Y-%m-01') time_id_
, country
-- , months_since_first_pay_period_day AS since_time_period_day
, months_since_first_pay_period_24h AS since_time_period_24h
, user_id
, COUNT(distinct order_id) AS pay_cnt
, SUM(sales) as sales
FROM tb_base_
-- WHERE DATE_FORMAT(first_pay_datetime_id ,'%Y-%m-01') >= '2023-01-01'
GROUP BY 1,2,3,4) tmp0
GROUP BY tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_24h
, tmp0.user_id
) tmp
) tmp1
GROUP BY time_id_
, country
, since_time_period_24h
)
, tb_base_day AS (
SELECT time_id_
, country
, since_time_period_day
, CASE
WHEN 'acc' = 'normal' THEN SUM(SUM(IF(since_time_period_day = max_since_time_period_day, repurchase_user_cnt, 0))) OVER
(PARTITION BY time_id_, country ORDER BY since_time_period_day DESC RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
ELSE SUM(repurchase_user_cnt)
END AS repurchase_user_cnt
, count(1) pay_user_cnt
, sum(sales) AS sales
FROM (SELECT *
, CASE WHEN since_time_period_day = 0 AND pay_cnt > 1 THEN 1
WHEN since_time_period_day = 0 AND pay_cnt <= 1 THEN 0
ELSE 1
END AS repurchase_user_cnt
, MAX(since_time_period_day) OVER (PARTITION BY country, user_id) as max_since_time_period_day
FROM
(SELECT tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_day
, tmp0.user_id
, SUM(tmp0.pay_cnt) AS pay_cnt
, SUM(tmp0.sales) AS sales
FROM
(SELECT DATE_FORMAT(first_pay_datetime_id ,'%Y-%m-01') time_id_
, country
, months_since_first_pay_period_day AS since_time_period_day
-- , months_since_first_pay_period_24h AS since_time_period_24h
, user_id
, COUNT(distinct order_id) AS pay_cnt
, SUM(sales) as sales
FROM tb_base_
GROUP BY 1,2,3,4) tmp0
GROUP BY tmp0.time_id_
, tmp0.country
, tmp0.since_time_period_day
, tmp0.user_id
) tmp
) tmp1
GROUP BY time_id_
, country
, since_time_period_day
)
, cohort_base_24h AS
(SELECT time_id_
, country
, since_time_period_24h
, repurchase_user_cnt
, pay_user_cnt
, sales
, SUM(sales) OVER w AS acc_sales
, FIRST_VALUE(pay_user_cnt) OVER w AS cohort_user_cnt
, COUNT(1) OVER (PARTITION BY country) AS cohort_cnt
FROM tb_base_24h
WINDOW w AS (PARTITION BY time_id_, country ORDER BY since_time_period_24h RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
)
)
, cohort_base_day AS
(SELECT time_id_
, country
, since_time_period_day
, repurchase_user_cnt
, pay_user_cnt
, sales
, SUM(sales) OVER w AS acc_sales
, FIRST_VALUE(pay_user_cnt) OVER w AS cohort_user_cnt
, COUNT(1) OVER (PARTITION BY country) AS cohort_cnt
FROM tb_base_day
WINDOW w AS (PARTITION BY time_id_, country ORDER BY since_time_period_day RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
)
)
SELECT *
, (pay_user_cnt * 100) / cohort_user_cnt AS retention_rate
FROM
(SELECT 1 AS time_id
, country
, since_time_period_24h
, SUM(repurchase_user_cnt) AS repurchase_user_cnt
, SUM(pay_user_cnt) AS pay_user_cnt
, FIRST_VALUE(sum(cohort_user_cnt)) OVER(PARTITION BY country RANGE BETWEEN UNBOUNDED PRECEDING and CURRENT ROW) as cohort_user_cnt
FROM cohort_base_24h
GROUP BY 1
, country
, since_time_period_24h) tmp3분석의 기준은 굉장히 중요합니다. 어떤 기준으로 분석하느냐에 따라서 의사결정 방향이 달라질 수 있겠죠?
코호트 분석은 시간을 계산해서 집계하는 분석인만큼 시간의 기준을 제대로 설정하는 게 중요합니다.
저도 실제로 분석해 보면서 분석 기준의 중요성을 다시 한번 깨달을 수 있었습니다.
혹시 지금 day 단위로 코호트 활용해 재구매율을 측정하고 계신다면 24시간 단위로 계산해 보시면 어떨까요?
Reference
https://medium.com/@paul.levchuk/how-to-build-user-cohort-properly-b70a74e5e1c8

August 29, 2024
Modern Growth Stack, 모던 그로스 스택으로 디지털 마케팅 솔루션 에어브릿지(Airbridge)와 브레이즈(Braze), 앰플리튜드(Amplitdue) 등을 다루는 AB180이 개최하는 디지털 마케팅 세미나입니다.
https://www.moderngrowthstack.com/speaker

이번 MGS 2024는 'FUTURE OF GROWTH'라는 주제로 2024.07.31 (수) 9시부터 18시까지 서울 코엑스 1층 그랜드볼룸 & 2층 아셈볼룸에서 진행됩니다.
디지털 마케팅 분야에서 MGS만큼 큰 규모로 개최되는 세미나는 3개+ 정도 있습니다.
1. MGS: Modern Growth Stack by AB180
2. The Maxonomy by CJ Maxonomy
3. MAX Summit by 모비데이즈(MOBIDAYS)
2022년에는 맥스서밋에서 발표를 했었고("온택트 시대, 푸드 테크 기업의 新 마케팅 전략"), 2023년에는 The Maxonomy에서 마티니의 발표 자료("마케팅하는데 개발이 왜 문제일까?")를 만들었고 2024년은 MGS에 마티니의 일원으로 참가하는데요.
MGS와 같은 대형 세미나를 가면 보통 한 장소에 홀이 여러 개 (main, sub1, sub2...) 있고 세션이 나눠서 진행됩니다. 관심사에 맞는 세션을 들으러 시간마다 자리를 이동하곤 하고요.



세션은 다양합니다.
인하우스(브랜드나 플랫폼)에서 마케팅 전략 및 실행안에 대한 인사이트를 나눌 때도 있고 솔루션사(Amplitude, Braze, Airbridge 등 PA, CRM, MMP Soltuion)에서 솔루션의 이점에 대해서 말하기도 하고요. 광고 플랫폼이나 대행사, 컨설팅사 등 주제와 연사도 다양하고 그에 따라 내용과 난이도도 다채롭습니다.
2024년 연사진만 슬쩍 봐도 구글(Google), 메타(Meta), X(엑스: 구 트위터 twitter), 커니(Kearny) 등의 광고 플랫폼들과 컨설팅사 및 29CM 등의 인하우스 눈에 띄네요.
디지털 마케팅 분야에서 유명한 AB180, CJ Maxonomy, 모비데이즈가 개최하는 세미나들인 만큼 운영하는 세션의 주제만으로도 트렌드를 파악하기 충분합니다. 오늘은 MGS 2024의 세션을 통해 최근의 마케팅 트렌드가 무엇인지 알아보려고 합니다.
우선 AB180측에서 분류해 둔 키워드는 #글로벌, #애드테크·마테크, #트렌드 #프라이버시 #게임 #제품분석 #AI #MMP #UA #크리에이티브 #풀퍼널마케팅 #CRM #수익화 등입니다.

키워드가 좀 많다 보니, 세션들을 확인하고 좀 더 포괄적으로 공통되는 주제로 분류하자면 아래 4개의 카테고리 정도입니다. 관련 주제에 어떤 세션들이 준비되어 있는지 짚어봅니다.
디지털 마케팅에서 이제 인공지능(AI)이 빠질 수 없겠죠. AI로 마케팅에 들어가던 인풋을 줄여주거나 성과를 개선하거나 데이터를 활용하는 내용 위주인 듯합니다.
이주원 Meta | Head of Marketing Science, Korea
https://ko-kr.facebook.com/business/ads

안재균 Moloco | 한국 지사장

Andy Carvell Phiture | CEO

이수현, Snowflake | 테크 에반젤리스트

Adrien Kwong, Xtend | Chief Commercial Officer
신창섭 X 코리아 | 대표
CRM: Customer Relationship Management 고객관계관리라는 아주 넓은 의미의 단어로 통용되고 있는 CRM 마케팅은 사용자와 닿는 메시지(팝업 배너, 앱푸시, 카카오톡, 문자, 이메일 등) 위주인데요.
퍼포먼스 마케팅보다는 비용 효율적이고(ex. 광고 소재 클릭당비용 보다는 카톡 발송 비용이 더 저렴한 경우), 웹/앱에서 사용자 행동 기반 개인화가 가능해 그로스해킹/그로스마케팅의 방법론으로도 많이 활용됩니다.
고주연, Braze | Area Vice President of Korea
이건희, 마티니 | 팀장
조형구/강하은, 29CM | Growth Marketer
최동훈, Amplitude | Senior Korea Partner Sales Manager
이재철, 마티니 | 팀장, 이형일, BKR | 이사
조경상, NNT | CEO
민병철, PIEDPIXELS | 사업 이사
오담인, 윤정묵, 장소영, 김형준, AB180 & Airbridge | Customer Success Team
애드테크는 Advertisement+Tech, 마테크는 Marketing+Tech로 광고와 마케팅에 있어 기술을 접목한 형태를 말합니다. 웹이나 앱에서의 성과 측정 및 사용자 행동 분석 등에 필요하죠.
정헌재, AB180 & Airbridge | CPO
김형빈, Viva Republica (Toss) | 부문장
✅ Shaping Android’s Privacy Sandbox
Pan Katsukis, Remerge | Co-Founder & CEO
호명규, Amplitude | 한국영업총괄
진겸, 당근 | 팀장
원하윤, Liner | PM
김동훈, 도소희, 현대카드 | Online Marketing
Bob Wang, PubMatic | Country Manager, Greater China & Korea
이승제, 딜라이트룸 | Product Owner, BD Lead
김나은, AB180 & Airbridge | VP of Growth
최동훈, Amplitude | 한국비즈니스총괄
최준호, Braze | Partner Sales Director
이수현, Snowflake | Tech Evangelist
윤가비, Apptweak | 한국 지사장
#글로벌, #애드테크·마테크, #트렌드 #프라이버시 #게임 #제품분석 #AI #MMP #UA #크리에이티브 #풀퍼널마케팅 #CRM #수익화
그로스마케팅, 그로스해킹, 그로스전략은 아직까지도 유효한 트렌드인 듯합니다. 그렇지만 결국 그로스를 이뤄내기 위해서는 조금 더 세부적인 부문의 실행 방안들이 필요합니다.
실행방안 #풀퍼널 #제품분석 #UA #크리에이티브 #CRM #수익화
사용자 여정의 풀퍼널(Full-Funnel)과 제품을 분석했을 때 프로덕트의 상황에 따라 UA(User Acquisitio, 신규 사용자 획득)에 초점을 맞춰야 할 수도 있고, 크리에이티브를 다변화하며 소재 A/B테스트를 운영해야 할 수도 있고, CRM을 통해서 사용자들에게 다음 단계 혹은 리텐션을 유도해야 할 수도 있고, '구매 전환'을 통한 수익화를 최우선으로 해야 할 수도 있습니다.
.
.
.

최근에 작은 브랜드를 운영하시는 대표님을 만나 뵌 적이 있었는데, 정말 열심히 하는 분이었습니다. 주말이면 온갖 웨비나와 세미나를 섭렵하시고 책도 읽고 강의도 들으시더라고요. 마케팅이 아닌 다른 부문에서 한평생 일하시다가 중장년의 나이에 공부를 하다 보니 따라가고 싶어 노력하신다 하셨어요.
이런저런 이야기를 하다가 저는 대표님께, 이제는 그만 듣고 또 공부하고 그냥 해야 할 때라고 말씀드렸습니다. 지금 수능 보고 낮은 점수받기 싫어서 계속 인터넷 강의 듣는 N수생 같다고요.
할 때는 해야 합니다. 다만 남들이 이미 풀어본 문제를 어떻게 푸는지 알고 가면 좋겠죠. 그 방식이 꼭 나에게도 맞을 거라는 보장은 없지만, 그래도 참고하면 방향성을 잡기에는 훨씬 수월하니까요. 그래서 디지털 마케팅 세미나들이 꽤 유용하지 않나 싶습니다.