
February 4, 2026

MCP(Model Context Protocol)는 AI가 외부 데이터를 활용할 수 있도록 연결해 주는 개방형 표준 프로토콜입니다. 쉽게 말해, AI 도구가 실시간으로 필요한 데이터를 가져와 활용할 수 있게 만드는 기술입니다.
앱스플라이어는 이 기술을 활용해 자연어만으로 마케팅 데이터에 바로 접근 가능한 MCP를 선보였습니다. Claude, ChatGPT 같은 AI 도구와 앱스플라이어를 연결하면, 캠페인 성과 분석부터 오디언스 관리, 딥링크 문제 해결까지 질문만으로 처리할 수 있습니다.
또한 앱스플라이어 MCP는 기술적 배경과 관계없이 누구나 필요한 데이터를 즉시 확인할 수 있도록 지원합니다. 사용자가 직접 질문하든, AI 에이전트에게 작업을 맡기든, 대기 시간 없이 명확한 정보와 실행 결과를 바로 받아볼 수 있습니다.

앱스플라이어 MCP는 Claude, ChatGPT, Gemini 같은 사용자가 선호하는 LLM(Large Language Model) 도구와 앱스플라이어를 연결합니다. 사용자가 질문을 입력하면 MCP가 자동으로 필요한 데이터를 찾아 이해하기 쉬운 형태로 보여줍니다. 어트리뷰션, 분석, 오디언스, OneLink(원링크) 등 앱스플라이어의 모든 기능을 자연어로 바로 활용할 수 있습니다.
또한 앱스플라이어는 7,000개 이상의 주요 브랜드가 신뢰하는 풍부하고 정확한 데이터를 제공하기 때문에 개인정보 보호를 철저히 준수하며 마케터가 필요한 인사이트를 즉시 확인하고 빠르게 의사결정을 내릴 수 있도록 돕습니다.
앱스플라이어 MCP는 개방형 구조로 설계되어 있어, 원하는 방식으로 커스터마이징할 수 있습니다. 미디어 믹스를 최적화하는 AI를 만들거나, 오디언스를 자동으로 관리하는 시스템을 구축하거나, 내부 도구에 MCP를 연결하는 등 복잡한 설정 없이도 필요한 기능을 유연하고 자유롭게 구현할 수 있습니다.

채널별 ROAS를 확인하고 싶거나, 어떤 캠페인이 가장 높은 LTV를 만드는지 알고 싶을 때 앱스플라이어 MCP를 활용해 보세요. 질문만 입력하면 필요한 데이터를 바로 확인할 수 있습니다.
앱스플라이어 MCP는 사람이 직접 질문하거나 AI 에이전트가 자동으로 작업하는 방식 모두 지원합니다. Growth, CRM, 제품, 마케팅 팀 등 어떤 팀이든 별도의 설정이나 개발 작업 없이 필요한 인사이트를 바로 확인할 수 있습니다.
앱스플라이어 MCP는 앱스플라이어의 어트리뷰션 기술을 기반으로 만들어졌습니다. 모든 데이터는 개인정보 보호 규정을 철저히 준수하며, 설계 단계부터 암호화와 보안을 적용했습니다.

캠페인 성과를 실시간으로 확인하고, ROI를 비교할 수 있습니다. 채팅창에서 직접 확인하거나, AI 에이전트를 활용해 성과 모니터링부터 최적화, 작업 실행까지 자동으로 처리하세요.
오디언스가 어떻게 나뉘고 활용되는지 한눈에 확인할 수 있습니다. 질문만으로 오디언스 현황을 조회하거나 실시간 성과를 분석할 수 있으며, 중복된 오디언스를 찾아내고 개선 방안을 제안하는 AI를 직접 만들 수도 있습니다. 필요하다면 여러 채널의 오디언스 정보를 자동으로 동기화하거나 작업을 실행할 수도 있습니다.
대화형 인터페이스로 OneLink 템플릿과 링크 동작을 간편하게 점검하거나, 에이전트를 활용해 링크 상태를 지속적으로 모니터링할 수 있습니다. 문제가 있는 링크를 자동으로 찾아내고, 모든 캠페인이 올바르게 운영되도록 관리할 수 있습니다.
앱 설정이나 구현 방법이 궁금할 때 질문만으로 바로 확인할 수 있습니다. AI 어시스턴트가 설정 오류를 찾아내 해결 방법을 알려주거나, 상황에 맞는 가이드 문서를 자동으로 보여줍니다.
앱스플라이어 MCP는 AI 기반 마케팅을 향한 중요한 첫걸음입니다. 사람의 창의성과 AI의 분석 능력이 결합되면, 마케터는 더 나은 의사결정을 내릴 수 있습니다.
MCP는 캠페인 분석, 오디언스 확인, 딥링크 관리 같은 마케터들의 핵심 업무를 지원하고 있으며, 추후 예측 분석과 에이전트 기반 자동화까지 확대 될 예정입니다. 데이터 기반으로 더 빠르고 정확한 의사결정을 내리고 싶다면, 지금 바로 앱스플라이어 MCP를 경험해 보세요.

January 9, 2026


브레이즈 캔버스(Canvas)는 고객의 행동과 속성을 기준으로 개인화된 메시지 흐름을 설계하는 고객 여정 오케스트레이션 도구입니다. 단일 캠페인이 하나의 캠페인을 특정 조건에 따라 발송하는 데 초점을 맞춘다면, 캔버스는 고객의 행동에 따라 여러 메시지와 채널을 유기적으로 연결합니다.
예를 들어, 회원가입 후 7일까지의 유저 저니 설계, 첫 구매까지의 지속적인 구매 유도 메시지 발송 등 단일 순간에 그치지 않고 지속되는 기간 동안 유저 저니에 따라 메시지를 보낼 수 있습니다.
캔버스를 활용하면, CRM 마케팅을 ‘단발성 메시지 발송’에서, 지속적인 고객 경험 관리로 확장할 수 있습니다.
특히 고객 행동이 빠르게 변화하는 환경에서는, 잘 설계된 캔버스가 마케터의 반복적인 운영 부담을 크게 줄여줍니다.


브레이즈 캔버스는 크게 진입 조건(Entry), 액션(Step), 분기(Split)으로 이루어져 있습니다.
해당 속성을 잘 활용하면, CRM 마케터는 하나의 캔버스 안에서 다양한 시나리오를 운영할 수 있습니다. 그뿐만 아니라 고객의 입장에서도 ‘자연스러운 경험’이 가능해져 더 높은 전환 성과를 기대할 수도 있습니다.
브레이즈 캔버스는 강력한 도구이지만, 설계 목적이 명확하지 않으면 오히려 캠페인 운영이 복잡해질 수 있습니다. 하나의 캔버스에는 하나의 목표를 두고, 온보딩•전환•리텐션 등 목적별로 캔버스를 분리해 설계하는 것이 효과적입니다.
또한, 지나치게 많은 분기와 조건은 운영 중 오류나 누락을 유발할 수 있습니다. 초기에는 단순한 구조로 시작하고, 성과와 데이터를 기반으로 점진적으로 고도화하는 방법이 안정적입니다.
마지막으로 데이터 반영 시점을 고려하여 적절한 대기 시간과 조건을 설정해야 합니다.
캔버스는 한 번 만들고 끝나는 것이 아니라, 운영 후 지속적으로 점검하고 개선해야 성과로 이어집니다.

January 6, 2026
CRM 마케팅의 중요성이 높아지면서, 많은 기업에서 브레이즈(Braze)를 활용해 CRM 마케팅을 진행하고 있습니다. 간단하게는 푸시 메시지 발송부터, 깊게는 캠페인 자동화까지. 브레이즈는 많은 CRM 마케터들에게 익숙한 도구가 되었습니다. 하지만 실제로 현장에서 듣는 이야기는 조금 다릅니다.
“기능은 많은데, 어디까지 쓰고 있는지 모르겠다”
”이 정도면 잘 쓰고 있는 건지 감이 안 온다”
브레이즈를 사용하는 것과 잘 ‘활용’하는 것은 다른 문제이기 때문입니다.
마티니는 이러한 고민에서 출발해, 브레이즈 활용도를 자가진단 해볼 수 있는 질문을 마련했습니다. 자가진단의 목적은 단순히 점수를 매기는 것이 아니라, 현재 우리 팀의 CRM 운영이 어느 단계에 와 있는지, 그리고 다음 단계로 나아가기 위해 무엇이 필요한지를 스스로 인식할 수 있도록 돕는 데 있습니다.
실제로 자가진단에 참여한 기업들을 살펴보면, 캠페인과 자동화는 잘 운영되고 있지만, 데이터 활용, AI 기능, 신규 채널(RCS 등)은 아직 충분히 활용되지 못하고 있는 경우가 많았습니다.

브레이즈를 사용하고 있다면, 이제는 ‘얼마나 잘 활용하고 있는지’를 점검해야 할 시점입니다. 지금 바로 우리 팀의 브레이즈 활용도를 진단해 보세요.
자가진단 점수 구간에 따라 현재 브레이즈 활용도가 어느 수준인지 쉽게 확인해볼 수 있습니다. 결과 페이지에서는 현재 활용 단계에 따른 제안도 함께 확인해볼 수 있습니다.
마티니가 정리한 브레이즈 활용 인사이트와 실제 사례를 통해, CRM을 한 단계 더 고도화하는 방법을 확인해 보세요.

June 12, 2024

우리는 여러 이유들로 사용자 분석을 합니다!
- 퍼포먼스 마케터는 전환 최적화에 활용할 사용자 특징과 상품을 알기 위해
- CRM은 고객들이 다시 돌아오게 하기 위한 타이밍과 상품들을 알기 위해
- 서비스기획자,PM은 새로 런칭한 기능의 사용성을 측정하기 위해
서비스 분석, 사용자 분석, 프로덕트 분석 등의 용어로 직군이나 산업군마다 서로 다른 이름으로 분석을 수행합니다.
분석 방식이 조금씩 다를 순 있지만 분석 목적은 동일합니다. 결국 '유저'가 '서비스'를 사용하면서 서비스의 최종 목표(구매 or 사용)를 달성하는 이유를 알고 싶습니다.
사실 동일한 물음이지만 분석 방향이 조금 달라질 수 있기 때문에 구분하였습니다.
개념과 목적은 간단하지만 막상 '분석 해줘'라고 하면 어디서부터 시작해야 할지 어렵긴 합니다. 분석은 현상을 특정 기준으로 쪼개고 나누어서 보면 쉬워집니다.
크게 아래 3가지 방식으로 사용자를 나눠가면서 분석 하시면 좀 더 쉽게 사용자 분석을 접근할 수 있을 겁니다.
- 서비스 랜딩 to 최종 목표 지점까지 지점별 분석
- 홈 -> 회원가입 -> 상세페이지 -> 장바구니 -> 구매
- 사용자의 성별, 연령과 같은 데모
- 사용자의 행동 누적 특성 (지금까지 구매한 브랜드명, 총 누적 구매액, 최근 구매일)
- 회원가입 후 구매하지 않은 유저
- 상품을 3번 이상 본 유저
- 장바구니에 담고 30일 이내 구매하지 않은 유저

June 11, 2024
통계는 데이터 분석에 필수지만 항상 어려운 것 같습니다. 비즈니스에서 가장 많이 사용하는 통계와 간단한 예시로 비즈니스에서 통계를 활용하는 방법을 알아보겠습니다.
우리가 흔히 사용하는 평균값부터 가설 설정까지 사실 많은 것들이 통계적 지식을 필요로 하고 있습니다.
데이터 분석가에게 통계는 필수적인 역량입니다. 물론 데이터 분석가가 아니더라도 데이터를 다루는 많은 영역에서 통계는 데이터를 이해하는 중요한 무기가 됩니다.

우리가 비즈니스에서 사용하는 통계 영역은 응용통계(Applied Statistics) 분야입니다. 응용통계 하위 에는 추론통계와 기술통계로 나누어집니다.
- 수집한 데이터로부터 현상을 이해하기 위해 데이터의 발생원인을 추정하는 방법입니다.
- 관측된 형태나 효과의 재현성 평가. 유의성 검정, 신뢰구간 추정 등의 통계적 추론을 하는 분석 방법입니다.
- 일반적인 순서 : 가설 설정 -> 실험 -> 통계분석 -> 가설 검증(지표 확인)
- 여기서 말하는 기술은 테크니컬 기술을 의미하는 것이 아니라 무언가를 설명하고 서술하다의 기술을 의미합니다. 즉, 현상을 설명하고 이해하려는 데 사용합니다.
- 원 데이터(Raw data)를 가지고 데이터를 탐색하고, 데이터의 특징과 구조로부터 얻은 정보를 바탕으로 자료의 특성을 확인하는 분석입니다.
- 가설을 미리 세우지 않고 전체 데이터를 탐색적으로 해석하는 접근법입니다.
- 일반적인 순서 : 데이터 수집 -> 시각화 탐색 -> 패턴 도출 -> 인사이트 발견

✔️ 비즈니스를 성장시키기 위해서는 실험을 기반으로 한 다양한 분석이 이루어져야 합니다. 그리고 중요한 건 이러한 사이클을 지속적으로 반복하는 것입니다. 이러한 성장 방법론을 그로스 모델이라고 하며 여기에는 앞서 살펴봤던 '추론통계'와 '기술통계' 2가지가 녹여져 있습니다.
✔️ 실험의 가설설정을 위한 통계는 기술통계(탐색적 데이터 분석)를 활용합니다. 예를 들어 유저가 특정 화면에서 이탈을 많이 한다는 것을 다른 화면 '평균' 대비 낮다는 것으로 정의합니다. 또한 빈도수를 기반으로 한 '히스토그램(분포)'으로 특정 화면의 기능이 어떤 빈도로 활용되는지를 확인해서 해당 기능을 강조하는 실험을 위한 재료로 활용할 수 있습니다.
즉, (기술 통계) 분석을 통한 인사이트 도출과 이를 활용하여 서비스 개선을 위한 가설 설정을 하는 것을 의미합니다.
✔️실험은 A/B 테스트와 같이 서비스의 주요 지점을 개선하는 활동들을 의미합니다. 특정 화면의 UI를 변경하는 테스트를 한다고 했을 때 우리는 A화면이 B화면보다 좋다는 것을 가설 검정이나 P-value 등과 같은 추론통계(확증적 데이터 분석 방법론)로 실험의 통계적 유의미를 확인합니다.
--
🌟 생각보다 비즈니스 분석에서 예측을 제외하곤 깊이 있는 통계를 요구하지는 않습니다. 평균과 분포와 같은 기본적 기술 통계만으로도 우리는 데이터의 인사이트를 충분히 도출 할 수 있습니다.
멋진 통계 기술보다 기본적 통계를 활용한 분석부터 시작해 보시죠! 통계를 너무 어려워하지 마세요!

June 11, 2024
--
사람은,텍스트로부터 정보를 얻을 때 시선의 이동과 정보를 얻는 방식이 정해져 있습니다.

✔️왼쪽에서 오른쪽으로
✔️위에서 아래로
이와 달리, 차트로부터 정보를 얻을 때는 시선의 이동 경로가 사용자마다 모두 다릅니다.
다만 몇 가지 시선이 시작하는 지점이 있다면 아래와 같습니다.

우리의 눈은 시각 정보에서 의식적 경로가 아닌 시각적 자극이 더 높은 지점을 따라 무의식적으로 자연스럽게 시선이 이동하게 됩니다.
따라서 차트의 정보를 제공하는 관점에서 차트 제목과 설명하는 내용도 중요하지만 전달하려는 차트의 중요 인사이트가 시각적으로 눈에 띄게 하는 것도 매우 중요합니다.
이러한 시각적 정보를 획득하는 특징을 이용하면 차트를 이용해 사용자에게 메시지를 더욱 효과적으로 전달할 수 있습니다.
--

June 10, 2024
얼마 전 알고 지내는 마케팅 팀장님으로부터 고민이 있다고 해서 연락을 받았습니다.
그리고 물어보시던 질문은 '우리 서비스로 획득되는 고객이 얼마나 남아있는지 의사결정자분이 물어봐서 리텐션율을 포함한 다양한 지표들로 설명하였지만 제대로 설득이 되지 않아서 어떻게 해야 할지 고민이다' 라는 얘기였습니다.
막상 얘기를 들었을 때는 충분히 잘 설명하고 있는것 같은데 왜 설득이 되지 않을까 라는 궁금증을 가지게 되었습니다. 아마도 리텐션이라는 지표가 가지는 숨은 의미를 풀어서 다 설명하지 못했던 게 원인이라고 생각했습니다.
--
많은 기업에서 '서비스를 사용하는 고객이 얼마나 남아있는지' 를 수치로 나타내기 위해 리텐션이라는 지표로 표현합니다.
리텐션은 내 서비스로 들어온 고객이 특정 기간 이후 다시 돌아오는 비율을 나타낸 지표입니다.
📄 이번 달 100명이 들어왔고 다음 달 그 중 50명이 다시 왔다면 : M+1 리텐션 50%
리텐션은 서비스의 건전성을 측정하는 강력한 지표입니다. 다만 문제는 리텐션으로 우리 서비스의 고객이 얼마나 남아있는지는 알 수 있지만 '서비스가 명확히 성장합니다' 를 확정 짓기 위해서는 몇 가지 기준과 지표가 더해져야 합니다.
--
예를 들어 어떤 서비스의 리텐션을 구매 기준 한달 후 (M+1 리텐션)로 정했다고 하겠습니다. 그리고 해당 리텐션이 10% 라고 한다면 해당 리텐션은 좋은 건가요?
이 지표가 좋고 나쁨을 알기 위해서는 유저 획득 단가(CAC)와 유저로부터 얻게 되는 LTV 기준을 먼저 확인해야 합니다.
리텐션이 중요한 이유는 획득한 유저들이 지속적으로 우리 서비스를 이용하고 그 고객들로부터 얻게 되는 가치가 계속 더해진다는 것입니다.
📄 100명의 고객이 첫 달 만든 매출 100만원 + 100명중 10명이 다음 달 남아서 만든 매출 20만원 = 100명이 만든 누적 매출 120만원 = M+1 LTV = M+1 10% 리텐션의 가치
--
그러면 중요한 것은 최초에 유저를 획득하는데 들어간 비용이 회수되고 이를 상회하여 비즈니스를 건전하게 하는 지점이 어디인지를 아는 것입니다.
예를 들어 유저를 평균 10만 원에 데리고 왔다면, 해당 고객으로부터 이익이 나는 BEP 시점은 해당 유저가 반복 구매를 하면서 최소 10만원의 매출총이익이 발생하는 시점이 될 것입니다.
(여기서 BEP는 마케팅 비용으로만 계산하였지만 운영비와 쿠폰비 등 다양한 요소가 더해져야 합니다.)
만약 BEP 시점이 유저 획득 후 60일 이라면 이제 리텐션의 목표 지점은 M+1 이 아니라 M+2 or M+3을 기준으로 해당 지점의 리텐션율의 월별 트렌드를 확인하면서 그래프가 우상향하는지를 확인하면 됩니다.
그러면 이제 우리 고객의 획득단가를 넘어서는 지점이 개선되고 있고 이를 통해 비즈니스가 비로소 안정적으로 성장하고 있다고 얘기할 수 있습니다.
📄 이를 투자회수기간 Payback Period라고 부릅니다.

--
이제 앞서 구한 CAC, LTV, Payback Period를 더해서 리텐션을 말한다면 의사결정자의 입장에서 좀 더 이해 가능한 지표가 완성될 것입니다.
아래 2가지 예시를 보면 비교가 더 쉬워집니다.
1️. "우리 서비스의 M+3 리텐션은 10% 입니다"
2. "우리 서비스의 유저 획득 단가는 3만 원입니다.
해당 유저를 통한 매출 총이익이 3만원이 되는 시점은 유저 획득 이후 평균 90일이 소요됩니다. 따라서 우리 서비스의 M+3 리텐션 10%는 BEP가 만들어지는 최소 기준이며 최근 6개월 기준 M+3 리텐션이 지속 우상향하면서 서비스가 안정적으로 성장하고 있습니다. 앞으로 M+3 리텐션에 긍정적인 영향을 주는 마케팅 요인을 찾고 개선하는 활동을 하도록 하겠습니다."
--

June 10, 2024
서비스를 사용하는 사용자의 여정을 이해하는 것은 매우 중요합니다. 서비스의 목표를 향해 유저는 다양한 경로로 서비스를 탐색하고 이동합니다.
대부분의 서비스 목표는 구매입니다. 다만, 서비스 내 기능이라는 관점에서 목표는 더 세분화 될 수 있습니다. 회원가입 단계, 검색 단계, 이벤트 페이지 단계 등 다양한 단계가 있습니다.
각 단계는 사용하는 고객으로부터 기대하는 최종적인 목표가 있다는 공통점이 있습니다.
회원가입을 예를 들면 회원가입 완료가 최종적인 목표이고, 해당 단계를 완료하기 위해 회원 & 로그인 페이지 진입 > 회원가입 페이지 도달 > 회원가입 정보 기입 등의 단계가 있습니다.
이제 단계를 정의했다면, 해당 단계의 최종 목적인 회원 가입 완료율을 올리기 위해 단계를 개선하는 다양한 방법을 고민하고 분석해야 합니다. 이때 가장 기본이 되는 분석 방법 중 하나는 퍼널 분석입니다.
각 단계를 진입하는 사용자 대비 다음 단계로 얼마 만큼의 유저가 이동하였는가를 보고 어떤 단계가 사용자의 이동에 문제가 있는지를 '단계별 전환율'이라는 지표로 확인을 하는 방법입니다.
퍼널 분석의 기초가 되는 5가지 고려 요소는 아래와 같습니다.

↳ 개선을 위한 퍼널 단계와 단계의 주요 KPI 정의
서비스의 어떤 지점을 분석항지 정의 후 각 퍼널 별 주요 이벤트를 정의합니다.
e.g. 상품보기>장바구니>구매시작>구매
↳ 절대량, 비교, 트렌드
주요 지표를 평가하기 위해 측정 기간의 지표 집계 & 이전 기간대비 지표 증분, 집계 기간의 데이터 트렌드를 보면서 KPI를 평가합니다.
↳ 단순 숫자보다 시각화는 더 극적인 효과를 보여줍니다
주요 퍼널의 전환 수치를 시각화하여 서비스 개선과 집중이 필요한 단계를 직관적으로 확안합니다.
↳ 퍼널 단계 / 퍼널 전 단계
직전 퍼널 단계 대비 다음 단계의 이탈율을 점검합니다. 동일 기준으로 단계별 실질 이탈율을 비교하여 문제 지점을 명확하게 정의합니다.
↳ 퍼널 단계 / 퍼널 최초 진입 단계
퍼널 시작점 대비 단계별 이탈율을 점검하고 최종 진입 대비 이탈은 퍼널에 대한 전체 전환율을 의미합니다. 퍼널 단계별 유저수를 함께 보면서 비율과 절대량을 동시에 확인합니다.

June 6, 2024
그로스 마케팅은 데이터를 활용하여 비즈니스 & 서비스를 개선시키는 마케팅 활동을 의미합니다.
그로스 마케팅에는 중요한 관점들이 많이 있지만 결국 서비스를 사용하는 유저의 여정과 그로부터 획득하는 데이터 2가지 관점으로 나눌 수 있습니다.
데이터는 획득과 저장 활용 관점에서 다양하게 도움을 주는 Solution들이 있으며 이를 Marketing + Tech = Mar-tech solution 이라고 부릅니다.
이러한 구분과 분석은 이후에 마케팅 액션과 전략에 대한 효과적 접근 방법이 됩니다.

↳ AARRR 프레임워크를 활용하여 유저를 서비스 인지와 획득, 활성화, 매출, 재방문, 추천 단계로 구분할 수 있습니다. 이외에도 다양한 프레임워크로 유저 단계를 구분할 수 잇습니다.
↳ 각 단계별로 중요하게 획득하는 유저의 행동들이 있습니다. 이를 각 단계별 주요 KPI로 볼 수 있습니다. 그리고 각 KPI를 기반으로한 분석과 액션을 진행할 수 있습니다.
↳ 각 단계별로 맞춤화하여 효과를 높일 수 있는 마케팅 방법론들이 다양하게 있습니다.
1. Data Source
↳ 데이터를 최초에 수집하는 단계로 데이터 소유와 활용 관점에서 1st, 2nd, 3rd party solution으로 나눌 수 있습니다. 흔히 알고 있는 GA, MMP, CRM 솔루션은 3rd party solution으로 분류되며 각 단계별로 수집과 활용에 최적화되는 솔루션들이 달라집니다.
↳ 앞서 수집된 데이터를 저장하는 단계입니다. 각 데이터는 여러 데이터 소스로부터 취합되기 때문에 적절한 처리를 통한 데이터 통합과 연결이 필요합니다. 이를 위해 Data Warehouse를 활용하여 데이터 ETL 과정을 진행합니다.
↳ 이제 준비된 데이터를 가지고 Python, R, Excel 등과 같은 분석 solution으로 데이터를 탐색하고 인사이트를 도출합니다. 앞서 우리는 여러 단계로 수집되는 데이터를 통합하였기 때문에 통합 마케팅 관점의 분석이 가능해집니다.
↳ 데이터 분석을 통해 유의미한 인사이트가 발굴되었거나 각 단계별로 주요 KPI의 흐름을 직관적이고 빠르게 확인하기 위한 시각화 작업을 합니다. 이를 통해 구성원 누구나 데이터에 접근하고 데이터를 바라볼 수 있습니다.
↳ 최종적으로 모든 단계를 마치면 조직에 데이터 기반의 의사결정을 할 수 있는 환경이 만들어집니다. 이를 Data-driven 환경이라고 합니다.

June 5, 2024
커머스의 경우 다양한 브랜드나 카테고리, 상품을 서비스 하는 경우가 많습니다.
만약 그 중 우리가 서비스하는 브랜드 가지수가 소수면 브랜드 관리에 큰 문제가 없지만 100개 혹은 1000개 이상 많은 브랜드를 가지고 있다면 모든 브랜드를 동일하게 관리하는 것은 어렵습니다.
이 때 집중해야 하는 브랜드와 아닌 브랜드를 통계적으로 나누는 방법을 쓴다면 좀 더 효과적으로 매출을 관리할 수 있습니다.
🔤 ABC 분석은 통계적 방법으로 전체 집단을 A,B,C 그룹으로 나누어 관리효율을 높여 매출 효과를 높이는 분석 방법입니다.
ABC 분석에서 그룹을 나누는데 활용하는 방법은 파레토 법칙 입니다. 때문에 파레토 분석이라고 부르기도 합니다.


파레토 법칙은 20% 소수가 80% 다수에 영향을 준다는 법칙입니다. 해당 법칙을 활용하여 80% 매출을 발생시키는 소수의 브랜드를 최우선 관리그룹으로 분류하고 나머지 그룹을 95% 기준으로 구분하는 방식입니다.



이렇게 브랜드를 매출기준으로 세분화하여 A 그룹에 집중한 매출 전략을 구현한다면 B그룹이나 C그룹에 대한 동일 관리 대비 높은 매출을 기대할 수 있습니다.
👉 예시는 브랜드 하나만 활용하였습니다. 이를 카테고리나 상품 혹은 고객 분류에도 활용해 볼 수 있습니다.
👉 파레토 분석을 활용하여 여러분의 서비스에 맞는 최적화 방식을 고민해보세요.
시각화는 루커스튜디오를 통해 만들어봤습니다. 추후에 필터나 대화형 시각화를 위한 추가적인 기능들이 좀 더 더해질 것 같습니다.

June 4, 2024

프로모션 시작날짜, 종료날짜, 프로모션 이름만 있다면 간단하게 구현가능 합니다.
커머스 뿐 아니라 프로모션이 빈번한 서비스에서는 다양한 프로모션이 진행되기도 하고 심지어 겹쳐서 진행되기도 합니다.
프로모션은 매출에 직접적인 영향을 주는 중요한 요소이기 때문에 프로모션에 대한 매출 영향도를 잘 분석해서 프로모션 효과를 지속적으로 높여나가야 합니다.
다만, 앞서 말한 것처럼 여러 개가 동시에 진행되는 프로모션의 매출과 영향도를 구별해서 보는 것은 쉽지 않습니다.
아래의 루커스튜디오 차트를 활용하면 프로모션에 대한 타임라인을 간단하게 시각화할 뿐 아니라 각 프로모션 주요 지표도 동시에 확인 가능합니다.
차트 내 필터 클릭 시 발생하는 기능 오류가 있긴 하지만 추후 차트에 대한 완성도가 높아진다면 날짜별 액션에 대한 성과분석이 중요한 프로모션 & CRM 마케터 분들에게 유용한 방식이 될 것 같습니다.
원본 포스팅 링크

June 3, 2024

비즈니스의 주요 지표를 파악하고 데이터 기반 의사결정을 하는 것은 매우 중요합니다.
다양한 기업들을 대상으로 데이터 드리븐 환경 구축을 목적으로 데이터 대시보드를 만들고 있습니다.
그 중 무엇보다 우선적으로 구축하는 것은 비즈니스 주요 지표를 한판에 보면서 전반적인 흐름을 살펴보는 KPI 대시보드 입니다.
KPI 대시보드를 구축하는 방법은 다양하지만 중요한 기준 중 하나는 지표의 표현 방식입니다.
비즈니스 주요 지표는 집계된 숫자로는 그 의미를 한눈에 알 수 없습니다.
(e.g.오늘의 매출 100만원)지표가 데이터로서 충분한 의미를 가지기 위해서는 비교와 비율이 필요합니다.
만약 해당 지표가 시계열 데이터라면 트렌드까지 더해주면 더욱 완벽한 지표 기준이 될 수 있습니다.
예를 들어 아래와 같이 해석할 수 있게 분석과 대시보드가 구성되어야 합니다.
"오늘 매출 100만원은 전일대비 30% 상승한 수치입니다. 다만 최근 1주일 트렌드 기준 하락추세이기 때문에 추가적인 매출 상승 전략이 필요합니다."
해당 내용을 담은 대시보드가 궁금하신 분들은 아래 링크를 확인해주세요.
원본 포스팅 링크