
February 4, 2026

MCP(Model Context Protocol)는 AI가 외부 데이터를 활용할 수 있도록 연결해 주는 개방형 표준 프로토콜입니다. 쉽게 말해, AI 도구가 실시간으로 필요한 데이터를 가져와 활용할 수 있게 만드는 기술입니다.
앱스플라이어는 이 기술을 활용해 자연어만으로 마케팅 데이터에 바로 접근 가능한 MCP를 선보였습니다. Claude, ChatGPT 같은 AI 도구와 앱스플라이어를 연결하면, 캠페인 성과 분석부터 오디언스 관리, 딥링크 문제 해결까지 질문만으로 처리할 수 있습니다.
또한 앱스플라이어 MCP는 기술적 배경과 관계없이 누구나 필요한 데이터를 즉시 확인할 수 있도록 지원합니다. 사용자가 직접 질문하든, AI 에이전트에게 작업을 맡기든, 대기 시간 없이 명확한 정보와 실행 결과를 바로 받아볼 수 있습니다.

앱스플라이어 MCP는 Claude, ChatGPT, Gemini 같은 사용자가 선호하는 LLM(Large Language Model) 도구와 앱스플라이어를 연결합니다. 사용자가 질문을 입력하면 MCP가 자동으로 필요한 데이터를 찾아 이해하기 쉬운 형태로 보여줍니다. 어트리뷰션, 분석, 오디언스, OneLink(원링크) 등 앱스플라이어의 모든 기능을 자연어로 바로 활용할 수 있습니다.
또한 앱스플라이어는 7,000개 이상의 주요 브랜드가 신뢰하는 풍부하고 정확한 데이터를 제공하기 때문에 개인정보 보호를 철저히 준수하며 마케터가 필요한 인사이트를 즉시 확인하고 빠르게 의사결정을 내릴 수 있도록 돕습니다.
앱스플라이어 MCP는 개방형 구조로 설계되어 있어, 원하는 방식으로 커스터마이징할 수 있습니다. 미디어 믹스를 최적화하는 AI를 만들거나, 오디언스를 자동으로 관리하는 시스템을 구축하거나, 내부 도구에 MCP를 연결하는 등 복잡한 설정 없이도 필요한 기능을 유연하고 자유롭게 구현할 수 있습니다.

채널별 ROAS를 확인하고 싶거나, 어떤 캠페인이 가장 높은 LTV를 만드는지 알고 싶을 때 앱스플라이어 MCP를 활용해 보세요. 질문만 입력하면 필요한 데이터를 바로 확인할 수 있습니다.
앱스플라이어 MCP는 사람이 직접 질문하거나 AI 에이전트가 자동으로 작업하는 방식 모두 지원합니다. Growth, CRM, 제품, 마케팅 팀 등 어떤 팀이든 별도의 설정이나 개발 작업 없이 필요한 인사이트를 바로 확인할 수 있습니다.
앱스플라이어 MCP는 앱스플라이어의 어트리뷰션 기술을 기반으로 만들어졌습니다. 모든 데이터는 개인정보 보호 규정을 철저히 준수하며, 설계 단계부터 암호화와 보안을 적용했습니다.

캠페인 성과를 실시간으로 확인하고, ROI를 비교할 수 있습니다. 채팅창에서 직접 확인하거나, AI 에이전트를 활용해 성과 모니터링부터 최적화, 작업 실행까지 자동으로 처리하세요.
오디언스가 어떻게 나뉘고 활용되는지 한눈에 확인할 수 있습니다. 질문만으로 오디언스 현황을 조회하거나 실시간 성과를 분석할 수 있으며, 중복된 오디언스를 찾아내고 개선 방안을 제안하는 AI를 직접 만들 수도 있습니다. 필요하다면 여러 채널의 오디언스 정보를 자동으로 동기화하거나 작업을 실행할 수도 있습니다.
대화형 인터페이스로 OneLink 템플릿과 링크 동작을 간편하게 점검하거나, 에이전트를 활용해 링크 상태를 지속적으로 모니터링할 수 있습니다. 문제가 있는 링크를 자동으로 찾아내고, 모든 캠페인이 올바르게 운영되도록 관리할 수 있습니다.
앱 설정이나 구현 방법이 궁금할 때 질문만으로 바로 확인할 수 있습니다. AI 어시스턴트가 설정 오류를 찾아내 해결 방법을 알려주거나, 상황에 맞는 가이드 문서를 자동으로 보여줍니다.
앱스플라이어 MCP는 AI 기반 마케팅을 향한 중요한 첫걸음입니다. 사람의 창의성과 AI의 분석 능력이 결합되면, 마케터는 더 나은 의사결정을 내릴 수 있습니다.
MCP는 캠페인 분석, 오디언스 확인, 딥링크 관리 같은 마케터들의 핵심 업무를 지원하고 있으며, 추후 예측 분석과 에이전트 기반 자동화까지 확대 될 예정입니다. 데이터 기반으로 더 빠르고 정확한 의사결정을 내리고 싶다면, 지금 바로 앱스플라이어 MCP를 경험해 보세요.

January 9, 2026


브레이즈 캔버스(Canvas)는 고객의 행동과 속성을 기준으로 개인화된 메시지 흐름을 설계하는 고객 여정 오케스트레이션 도구입니다. 단일 캠페인이 하나의 캠페인을 특정 조건에 따라 발송하는 데 초점을 맞춘다면, 캔버스는 고객의 행동에 따라 여러 메시지와 채널을 유기적으로 연결합니다.
예를 들어, 회원가입 후 7일까지의 유저 저니 설계, 첫 구매까지의 지속적인 구매 유도 메시지 발송 등 단일 순간에 그치지 않고 지속되는 기간 동안 유저 저니에 따라 메시지를 보낼 수 있습니다.
캔버스를 활용하면, CRM 마케팅을 ‘단발성 메시지 발송’에서, 지속적인 고객 경험 관리로 확장할 수 있습니다.
특히 고객 행동이 빠르게 변화하는 환경에서는, 잘 설계된 캔버스가 마케터의 반복적인 운영 부담을 크게 줄여줍니다.


브레이즈 캔버스는 크게 진입 조건(Entry), 액션(Step), 분기(Split)으로 이루어져 있습니다.
해당 속성을 잘 활용하면, CRM 마케터는 하나의 캔버스 안에서 다양한 시나리오를 운영할 수 있습니다. 그뿐만 아니라 고객의 입장에서도 ‘자연스러운 경험’이 가능해져 더 높은 전환 성과를 기대할 수도 있습니다.
브레이즈 캔버스는 강력한 도구이지만, 설계 목적이 명확하지 않으면 오히려 캠페인 운영이 복잡해질 수 있습니다. 하나의 캔버스에는 하나의 목표를 두고, 온보딩•전환•리텐션 등 목적별로 캔버스를 분리해 설계하는 것이 효과적입니다.
또한, 지나치게 많은 분기와 조건은 운영 중 오류나 누락을 유발할 수 있습니다. 초기에는 단순한 구조로 시작하고, 성과와 데이터를 기반으로 점진적으로 고도화하는 방법이 안정적입니다.
마지막으로 데이터 반영 시점을 고려하여 적절한 대기 시간과 조건을 설정해야 합니다.
캔버스는 한 번 만들고 끝나는 것이 아니라, 운영 후 지속적으로 점검하고 개선해야 성과로 이어집니다.

January 6, 2026
CRM 마케팅의 중요성이 높아지면서, 많은 기업에서 브레이즈(Braze)를 활용해 CRM 마케팅을 진행하고 있습니다. 간단하게는 푸시 메시지 발송부터, 깊게는 캠페인 자동화까지. 브레이즈는 많은 CRM 마케터들에게 익숙한 도구가 되었습니다. 하지만 실제로 현장에서 듣는 이야기는 조금 다릅니다.
“기능은 많은데, 어디까지 쓰고 있는지 모르겠다”
”이 정도면 잘 쓰고 있는 건지 감이 안 온다”
브레이즈를 사용하는 것과 잘 ‘활용’하는 것은 다른 문제이기 때문입니다.
마티니는 이러한 고민에서 출발해, 브레이즈 활용도를 자가진단 해볼 수 있는 질문을 마련했습니다. 자가진단의 목적은 단순히 점수를 매기는 것이 아니라, 현재 우리 팀의 CRM 운영이 어느 단계에 와 있는지, 그리고 다음 단계로 나아가기 위해 무엇이 필요한지를 스스로 인식할 수 있도록 돕는 데 있습니다.
실제로 자가진단에 참여한 기업들을 살펴보면, 캠페인과 자동화는 잘 운영되고 있지만, 데이터 활용, AI 기능, 신규 채널(RCS 등)은 아직 충분히 활용되지 못하고 있는 경우가 많았습니다.

브레이즈를 사용하고 있다면, 이제는 ‘얼마나 잘 활용하고 있는지’를 점검해야 할 시점입니다. 지금 바로 우리 팀의 브레이즈 활용도를 진단해 보세요.
자가진단 점수 구간에 따라 현재 브레이즈 활용도가 어느 수준인지 쉽게 확인해볼 수 있습니다. 결과 페이지에서는 현재 활용 단계에 따른 제안도 함께 확인해볼 수 있습니다.
마티니가 정리한 브레이즈 활용 인사이트와 실제 사례를 통해, CRM을 한 단계 더 고도화하는 방법을 확인해 보세요.

July 4, 2024
태그 설치를 끝낸 후 GA4 대시보드에서 데이터가 잘 수집되는 것을 확인했다면 이제 데이터 시각화 기능인 루커 대시보드와 연동하여 나만의 대시보드를 만들 수 있다.
GA4의 유입 데이터와 내부 데이터를 연동하여 한 화면에서 비즈니스 데이터를 확인할 수 있기 때문에 데이터 기반 인사이트를 용이하게 확인할 수 있다. 내 웹사이트에 어떤 경로로 들어왔는지, 어느 페이지에서 이탈률이 높은지, *스크롤은 몇 % 내리는지, 어느 광고 매체에서 구매 전환 혹은 매출이 많이 일어나는지 한 화면에서 확인이 가능하다.
그리고 루커 대시보드는 gmail 계정만 있으면 관련 담당자와 쉽게 공유할 수 있으므로 타 부서와 긴밀하게 매출과 비즈니스 KPI를 관리할 수 있다는 장점이 있다.
루커 대시보드에서 차트를 구현할 때 연동하는 데이터 세트를 ‘데이터 소스’라고 한다. 데이터 소스는 루커 스튜디오의 커넥터를 클릭하여 쉽게 연동이 가능한데, 루커는 무려 1,000개 이상의 다양한 데이터 소스를 간편하게 연동할 수 있도록 지원하고 있다. (연동 가능한 데이터 소스 종류 확인하기)
만약 내가 기존에 적재하고 있던 구글 시트 보고서의 데이터와 GA4 데이터를 기반으로 대시보드를 만들고자 한다면 구글시트와 GA4 계정을 커넥터에 연결해서 확인할 수 있다.

구글 시트 보고서와 GA4 데이터를 연결해야 하기문에 커넥터에서 ‘Google 애널리틱스’와 Google Sheet를 클릭하여 연동을 시작한다. 구글 시트는 워크시트별로 연동이 가능하고 GA4는 해당 계정에 대해 권한이 있어야 연동이 가능하다. 다만 이때 각 열의 헤더(제목)이 있어야 하고 헤더는 중복되면 안된다.

루커 스튜디오는 ‘보기’모드와 ‘수정’모드가 있다. 보기 모드는 편집자 권한이 없는 사람이 대시보드가 보이는 형태를 확인할 수 있고 편집자 모드가 있을 경우 ‘수정’모드에서 각 차트와 대시보드 스타일에 대한 요소들을 생성 및 수정할 수 있다.
수정 모드에서는 가장 우측 데이터, 속성, 필터 표시줄 이모티콘을 클릭함으로써 각 기능에 대한 툴바를 숨김 처리할 수 있다.

(상단 좌측부터 순서대로 설명)
[✔︎ 가장 많이 쓰는 차트 예시]
(1) 막대그래프 및 열 차트 (링크)

(2) 선 차트 및 콤보 차트 (링크)

(3) 스코어카드 (링크)
1개의 측정항목에 대한 요약 수치를 표시할 수 있다. 전자상거래 대시보드에서는 총매출, 구매 수, 광고소진액, 신규 유저, MAU, DAU에 대한 수치를 증감률과 함께 확인할 수 있다.

(4) 시계열 (링크)
시간의 흐름에 따라 데이터가 어떻게 변화되는지 확인할 수 있다. 전자상거래 대시보드에서는 일별 구매수, 세션별 일별 구매자 수, 일별 광고비 등을 확인할 수 있다.

(5) 원형 차트 (링크)
값 비율 차이가 큰 데이터를 비교할 때 많이 쓰는 차트로 전자상거래 대시보드에서는 광고비 비중, 채널별 비중을 확인할 수 있다.

(6) 트리맵 차트 (링크)
값이 큰 데이터 항목일수록 색상이 진하고 크기가 크게 표시되는 차트로 계층별로 정리하여 비교할 수 있다는 장점이 있다.

(7) 피벗 테이블

루커 시보드에서 데이터를 연결하고 어떤 차트를 구현할 수 있는지 파악이 완료되었다면 실제로 내가 활용할 대시보드의 목차를 기획해야 한다. 대시보드를 이용하는 사용자가 누군지 파악해야 하고 가능하면 사용자 관점에서 보기 편리하도록 대시보드를 구성해야 한다. 즉, 사용자가 무엇을 알고 싶어 하는지를 파악해야 한다.
가장 좋은 방법은 파악한 사용자들과 함께 회의를 통해 목차를 구성하고 아웃라인을 작성하는 것이지만 그것이 어렵다면 목차라도 함께 작성해야 한다. 사용자가 대시보드를 보고 의미를 쉽게 파악하지 못하거나, 알고 싶은 데이터가 대시보드에 반영되어 있지 않다면 지금까지 노력을 기울여 만든 대시보드의 활용성을 떨어지기 때문에 이 부분을 가장 중점적으로 생각해야 한다.
이커머스 서비스에서 가장 기본적으로 파악해야 하는 그래프를 바탕으로 대시보드 목차를 생각해 보면 다음과 같다.
GA4, 루커 스튜디오와 같이 구글 플랫폼을 활용할 때 많이 들어볼 수 있는 측정항목과 측정 기준의 개념을 이해하고 가는 것이 좋다.

Dimensions (측정기준)
Metrics (측정항목)

예를 들어 위 그림처럼 매체별 광고 성과에 대한 피벗 테이블 차트를 구현하고 대시보드에 추가하려고 한다면 어떻게 해야 할까?

피벗 테이블을 추가하고 수식을 걸지 않은 광고비, 노출, 클릭, 구매, 구매금액까지는 데이터 소스에서 추출하여 측정항목을 선택하여 그대로 차트에 넣으면 된다. 단, CPC, CTR, ROAS의 경우 수식 계산이 필요한데 계산된 필드로 만들어서 측정항목으로 추가할 수 있다.

계산된 필드 생성을 클릭하면 필드 생성 창이 뜨는데, 원하는 측정항목 이름으로 필드 이름을 적은 후 수식에 루커 스튜디오 함수 목록을 참고하여 수식을 입력한다.
[✔︎ 많이 쓰는 함수식]
(1) CPC
SUM(광고비) / SUM(클릭수)
(2) CTR
SUM(클릭) / SUM(노출)
(3) ROAS
SUM(구매금액) / SUM(광고비)
(4) CPI
SUM(광고비) / SUM(설치수)
(5) CPA (구매)
SUM(광고비) / SUM(구매이벤트수)
* 루커스튜디오 함수 목록 (링크)

이렇게 맞춤으로 생성한 계산된 필드는 데이터 툴바에서 파란색으로 필드명이 보이게 된다. 대시보드 화면에 추가한 차트를 클릭하여 해당 차트의 측정항목에 필드명을 가져온다.

속성 툴바에서는 설정과 스타일 탭 두 가지가 있는데 설정 탭에서는 차트에 들어가는 측정항목에 대한 추가/삭제, 필터, 정렬을 설정할 수 있고 스타일 툴바에서는 차트 색, 소수점, 글꼴, 데이터 없음 표시 종류 등 디자인과 관련한 항목을 설정할 수 있다.
(1) 소수점 변경하는 방법

(2) 색상 변경하는 방법

(3) 데이터 누락 서식 지정하는 방법

지금까지 루커 대시보드를 구현하는 방법에 대해 데이터 연결부터, 시각화 구성, 루커 대시보드 구현하는 방법까지 설명하였는데 루커 대시보드를 직접 구현해 보는 데 도움이 되었으면 좋겠다. 예시 대시보드를 참고하여 우리 서비스만의 대시보드를 만드는 것도 좋은 연습이 될 것 같다. 실제 우리 데이터를 연결해 보고 다양한 시각화를 시도해 보며 경험을 쌓는 데 좋은 시작이 될 것이라고 믿는다.
*궁금한 점이나 추가적인 도움이 필요하다면 언제든지 문의해 주세요! 여러분의 데이터 시각화 여정에 도움이 되기를 바랍니다. 감사합니다😊

July 3, 2024
본업이 그로스마케터이므로... '그로스마케팅'와 관련된 포스팅을 지속적으로 작성하고 있는데요. 관련 키워드로 '패션마케팅'이 검색량이 높아 무신사, 29CM, W컨셉을 사례로 준비해 보았습니다. (좀 더 알아보니 패션마케팅은 대학교 학과가 있어 입시생들의 검색량이 높은 키워드인 듯은 하네요.)
무신사의 브랜드마케터 채용 공고를 먼저 보겠습니다.

cf. https://brunch.co.kr/@marketer-emje/13

퍼포먼스마케팅에서 배너 광고를 운영할 때 그 소재로 브랜드가 강조될 수 있고, 프로모션이 강조될 수도 있고, 인플루언서가 강조될 수도 있고 메인 콘셉트를 무엇으로 하느냐에 따라서 소재 베리에이션은 다채로울 수 있는데요. 예시와 함께 보겠습니다.

페이스북 광고 라이브러리에서 'WConcept'을 검색했을 때 결과 중 일부를 가져왔는데요.
W컨셉에서 W컨셉 페이지로 랜딩 시키는 것은 당연한데, W컨셉에 입점해있는 '브랜드'들이 광고의 랜딩을 랜딩을 W컨셉으로 보내네요!
소규모 브랜드라면 개별 웹사이트를 관리, 운영하는 것보다 수수료를 감안하더라도 의류 플랫폼(W컨셉 등)에서의 매출을 높이는 것이 더 낫다고 판단했다고 추측할 수 있습니다.


신규 가입과 앱 첫 구매의 내용이 담겼다는 것은 해당 광고의 세팅이 '리타겟팅'이 아닐 것이라 추측할 수 있습니다. 아마 성별만 '남성'으로 지정하고 오픈 타겟으로 열지 않았을까 싶네요. 디타겟팅(=타겟에서 제외하는 것)으로 이미 회원인 분들과 앱이 있는 분들을 타겟에서 제외하고요.

해당 업무는 일반적인 퍼포먼스마케터/그로스마케터가 진행하기보다는 무신사의 예시처럼 '인플루언서 마케터'의 직무가 따로 있는 경우가 많습니다.

인스타그래머라면 피드, 스토리의 이미지/워딩 그리고 유튜버라면 유튜브 구성안과 기획안을 검토하면서 논의를 이어가게 됩니다. 일정, 비용, 스토리라인, 강조되어야 하는 점, 해시태그 등을 이야기하고요.
하단 예시처럼 유상 광고 소재(인스타그램 광고 소재)로 인플루언서의 이미지를 활용하는 경우 추가 협의가 필요합니다.
새로운 회원들을 어느 정도 유치했다면, 그 회원들을 계속해서 유지하는 것이 관건이겠죠. 리텐션(=재방문율/재구매율)이 그 지표가 되는데요. 리텐션의 기본으로 여겨지는 것 중 하나가 멤버십입니다.

W컨셉은 5개의 멤버십 등급을 가지고 있고, 그 기준으로는 누적 구매액과 함께 구매'수량'을 같이 보고 있습니다. 해석해 보자면 딱 한 개의 상품만 샀는데 - 그 상품이 100만 원짜리였다 -라고 했을 때 한 번에 VIP로 가는 것을 방지하기 위함이라고 볼 수 있습니다. 한 번 들어와서 비싼 것 한 개 산 사람보다, 여러 번 들어와서 중고가를 여러 개 산 사람이 더 충성도가 높다고 판단하는 것이겠죠?
29CM의 경우 동일한 워딩에 여러 브랜드X상품 이미지를 활용하기 위해 조금 포괄적인 내용을 광고 워딩으로 썼는데요. 29CM의 아이덴티티 + 매월 멤버십 쿠폰 ~15% 혜택을 강조합니다. 여기엔 신규 회원 가입이나 앱 설치 쿠폰이 없는 것을 보아 신규를 대상으로만 하는 광고가 아님을 알 수 있고요.

무신사스탠다드(무신사의 PB브랜드)의 마케팅 팀장 채용 공고에도 '중요 이벤트와 프로모션 지원을 통해' 라는 워딩을 통해 마케팅과 연계된 프로모션의 중요성을 인지할 수 있습니다.

상품 할인과 쿠폰 할인(상품 쿠폰, 장바구니 쿠폰)의 구분은 커머스에서 혜택을 설계할 때나 손익을 계산할 떄 때 그리고 심지어 프로덕트 애널리틱스에서 이벤트/프로퍼티의 택소노미를 설계할 때도 아주 중요한 요소입니다.


앱 설치 쿠폰 및 가입 혜택 프로모션은 Always-on 올웨이즈온 캠페인에 속하고, 홀리데이 프로모션은 팝업/애드훅 캠페인으로 볼 수 있겠죠? (와 쉽다!)
보통 앱 설치, 가입의 경우 장기적인 관점의 KPI 달성을 위해 진행되는 캠페인으로 일간/주간/월간 성과를 지속적으로 모니터링하고요. 팝업/애드훅 캠페인의 경우 정해진 기간 동안 최대 매출 등의 목표치를 달성하는 것이 중요합니다. (무신사의 무진장세일이 매년 역대급 매출을 갱신한다고 하죠...? 그렇지만 무진장 정도면 이제는 정규 캠페인이라고도 볼 수 있겠네요)

CRM 수단으로는 앱 중심의 서비스인 경우 앱푸시, 카카오톡을 위주로 사용하고 웹의 경우 배너/팝업 또한 CRM의 일환으로 볼 수 있겠습니다. 문자 및 이메일은 조금 더 전통적인 수단이겠죠?

CRM 마케팅은 CRM 마케터 직무로도 많이 채용하지만, 그로스마케터의 수행 업무에 수반되는 경우도 꽤 있습니다. 29CM의 그로스 마케터 채용 공고를 보면 '고객 커뮤니케이션 타겟 / 채널 / 메시지 테스트 및 운영' 이라는 워딩을 볼 수 있는데요. 하단처럼 쪼개서 생각할 수 있고, 결국 CRM 마케팅에 대한 내용이라는 것을 알 수 있습니다.
CRM 마케팅이 최근 뜨는 이유는 개인 정보 보호 트렌드 때문인데요. 과거 퍼포먼스마케팅에서는 정교한 타겟팅을 위해 사용자가 웹 내에서 행동했던 것들을 추적하는 (cookie, 쿠키! 한 번쯤은 지워보셨죠?) 것이 중요했는데 이 쿠키 정보의 제공이 중단되면서 일반적인 퍼포먼스마케팅의 효율이 낮아지며 비용이 높아진 것도 일부 원인이 있고요.
상대적으로 CRM은 이미 보유한 회원 모수를 대상으로 메시지를 보내기에, 신규 사용자를 획득하는 것보다 효율이 높고(=비용이 낮고) 운영에 필요한 실 비용이 메시지 발송 비용 정도로 상대적으로 비용이 낮기 때문도 있습니다. CRM마케팅은 기회가 된다면 다음에 좀 더 자세하게 풀어보도록 할게요!
이렇게 패션 플랫폼의 그로스 마케팅 (ft. 무신사, 29CM, W컨셉)을 광고 소재와 채용 공고, 프로덕트를 통해서 Acquisition과 Retention 위주로 알아봤습니다.
[다른 글 보러 가기]
그로스마케팅과 AARRR 퍼널 분석 (ft. 29CM)
https://brunch.co.kr/@marketer-emje/11

그로스마케팅이란? 콘텐츠도 퍼포먼스도 UIUX개선도!
https://brunch.co.kr/@marketer-emje/10

그로스마케팅과 AARRR:Acquisition 획득
https://brunch.co.kr/@marketer-emje/13

풀스택 마케팅 컨설팅펌 마티니아이오

July 2, 2024
블로그나 서비스를 운영하다 보면 내 게시물이나 제품이 자연스럽게 Google 또는 Naver 검색 결과에 노출되길 기대하게 됩니다.
이러한 관점에서 접근하는 방법이 Search Engine Optimization(SEO)입니다.
Google과 Naver 모두 자체 검색 엔진에서 노출되는 다양한 방법과 데이터를 제공합니다. 이는 각각 Google Search Console과 Naver Webmaster Tools입니다.
그 중 Google에서 제공하는 Google Search Console은 키워드 노출, 클릭 수, 순위 등 유용한 정보를 제공하지만, 여전히 복잡한 정보를 얻기에는 어려움이 있습니다.
저 또한 블로그를 운영하면서 Google Search Console을 자주 방문하고 관찰하지만, 이러한 점이 아쉬워 복잡한 데이터를 확인할 수 있는 대시보드를 만들었습니다.
1️. 좌측 하단의 구글서치콘솔 변경 시 내 데이터를 확인할 수 있습니다.
2️. 노출도에 따른 키워드 그룹을 두어서 그룹간 관리가 용이합니다.
3️. 새롭게 등장하는 키워드를 파악할 수 있습니다.
4️. 기간, 기기, 국가에 따라 다양한 지표 변화를 빠르게 확인할 수 있습니다.

July 1, 2024

GA4는 유저가 수행한 행동 기반의 분석을 할 수 있게 도와주는 솔루션입니다. 기존의 세션 기반으로 획득관점의 유저분석을 목표로 했던 UA의 단점을 보완하는 업데이트였습니다. 다만, 기본적으로 제공하는 대시보드가 UA 대비 친절하지 않다보니 GA4로 넘어가는 많은 마케터분들과 분석가분들이 어려워하는 경우가 많았습니다.
이러한 단점을 보완하기위해 GA4의 데이터 + UA의 UI를 합친 루커스튜디오 대시보드를 만들었습니다.

퍼포먼스 마케팅을 처음 시작했을 때, Google Analytics(GA)는 제가 처음 접한 주요 도구 중 하나였습니다. 처음에는 기능이 많아 어색하고 어려웠지만, UA는 곧 필수적인 도구가 되었습니다. 잘 구성된 메뉴와 사용자 인터페이스(UI) 덕분에 쉽게 탐색하고 데이터를 분석할 수 있었습니다.
UA는 사용자, 획득, 행동, 전환의 네 가지 주요 영역으로 주제가 나뉘어 있어 분석이 매우 간단했습니다. 이러한 구조 덕분에 메뉴 순서에 따라 데이터를 분석함으로써 비즈니스 현상을 이해하기가 쉬웠습니다.
GA4는 UA의 획득 관점에 초점을 맞춘 세션 기반 분석에서 행동 기반 분석 방식으로 데이터 구조를 크게 변경하였습니다. 이러한 변화는 UA의 데이터 단점을 보완했습니다. 그러나 GA4의 메뉴가 UA처럼 주제별로 명확하게 구분되어 있지 않다는 점은 다소 아쉬웠습니다.

두 가지 장점을 결합한 대시보드이러한 문제를 극복하기 위해 UA의 분석 섹션과 GA4의 이벤트 수준 분석을 결합한 대시보드를 만들었습니다. 이 대시보드는 UA의 익숙한 UI를 유지하면서 GA4의 고급 분석 기능을 활용합니다.

July 1, 2024
구글 애널리틱스와 앰플리튜드의 기능, 추적 방식, 분석 항목, 의의와 장단점, 담당자를 비교하자면 하단과 같습니다. 해당 내용의 이해를 위해 차근히 퍼포먼스마케터, 그로스마케터의 직무 요건에서부터 왜 애널리틱스가 중요한지(GA든 Amplitude든) 알아보도록 하겠습니다.



마케터로 생각하는 직무는 주로 퍼포먼스 마케터일 것입니다. 퍼포먼스마케터, 소위 퍼포마는 브랜드나 대행사(에이전시)에서 마케팅 전략을 수립하고 미디어믹스를 짜고 (매체 별/광고 상품 별로 얼마나 쓸 건지를 짜는 것) 이후 해당 미디어믹스에 따라 광고를 집행한 후에 광고 성과를 관리합니다.
그렇다면 퍼포마의 채용 공고를 분석해 보겠습니다. 퍼포먼스 마케터의 직무 요건 및 우대 사항에는 Google Analytics와 Amplitude가 꽤 자주 등장합니다. 심지어 데이터 분석가 직무에도 있네요. 왜일까요?



한 건의 전환이 일어나기까지, 한 명의 사용자에게 노출되는 광고는 수도 없이 많습니다. 마케팅을 열심히 할수록 그렇습니다. 사용자가 1) 인스타그램 광고도 볼 거고, 2) 유튜브 콘텐츠를 봤을 수도 있고, 3) 카카오 배너 광고를 봤을 수도 있고, 4) 네이버 검색 광고를 봤을 수도 있습니다. 이렇게 수많은 광고 매체를 거쳐, 한 건의 전환이 일어났을 때 가장 중요한 질문은 무엇일까요?


다수의 광고 매체들은 다 자기가 기여를 했다고 말합니다. 그래서 광고 관리자로만 광고 성과를 보면 과도하게 성과가 집계될 수밖에 없고, 중복 집계될 수밖에 없는 것입니다.
일주일 안에 저 광고 매체들에 다 노출되었던 사용자가 전환을 했다고 가정해 볼까요? 그렇다면 기여 기간은 7일인 것이고 (광고 매체의 성과를 인정해 주는 기간) 노출된 매체는 4개, 그중 유상(Paid) 광고 매체 3개입니다. (유튜브 콘텐츠는 자사의 브랜딩이었다고 하면요.)
그럼 그중 누가 이 전환의 성과를 가져갈까요?

이렇게 광고 성과의 기여값을 보다 정확하게 측정하기 위해서 Attribution Tool(어트리뷰션툴), Analytics(애널리틱스)가 존재합니다. Web Analytics로 가장 유명한 것이 구글 애널리틱스인 것이고요.
글의 초반 앰플리튜드 vs 구글애널리틱스 비교표에서 언급했었죠. 구글 애널리틱스는 이처럼 광고 매체들의 전환값의 기여도를 측정하여 마케팅을 효율화하는 것을 목적으로 많이 활용합니다.


여기서 또 하나 짚어야 할 것이 있습니다. 그 광고, 클릭하면 어디로 가나요? 클릭해서 이동한 페이지에서 보통 전환이 일어날 테니까요.

마케팅 캠페인이 '웹'에 치중되어 있을 때는 구글애널리틱스의 시대였습니다. 그렇지만 '앱'이 뜨기 시작하고 앱마케팅이 활성화되면서 구글애널리틱스 또한 한계에 부딪힙니다.

웹으로 랜딩 된 후 구매라는 전환 행동이 일어날 때 구글 애널리틱스는 Last touch 기여 설정에 의해서, 해당 전환의 성과는 '페이스북'에게 있다고 측정했습니다.

그런데 웹 랜딩 이후 앱 설치가 진행되고 앱에서 구매가 일어나면 어떻게 될까요? 사용자의 흔적을 파악할 수 있던 utm (광고 매체의 소스값)이 유실되며 광고 매체의 성과를 잡지 못하고, organic (자연 유입)으로 측정하게 됩니다.
cf. 여기서 utm의 광고 매체 소스값이란...?
구글에 나이키를 검색하면 '스폰서' 광고로 나이키가 뜹니다. 이걸 클릭하면 url이 이렇게 나옵니다.
https://www.nike.com/kr?utm_source=Google&utm_medium=PS&utm_campaign=365DIGITAL_Google_SA_Keyword_Main_PC&cp=72646825390.... > utm_source=Google이라고 알려줍니다. (소스값) utm_medium=PS라고 알려줍니다. (매체) 이 두 개의 조합을 광고 매체의 소스값이라고 합니다.

그래서 앱 마케팅이 중요해질수록 MMP와 PA의 인지도 또한 높아질 수밖에 없습니다. MMP는 Mobile Measurement Partners로 앱스토어에 SDK를 붙여 앱 설치 성과를 측정해 주는 솔루션을 말하고, PA(Product Analytics)는 이러한 MMP들을 연동하여 앱 설치 성과를 분석할 수 있도록 도와줍니다.


서비스가 Web 위주인 경우 구글애널리틱스만 사용해도 충분합니다. 다만 App 위주인 경우 App 설치 성과를 분석하는 MMP (Appsflyer, Adjust, Airbridge 등)와 Web to App을 추적하고, App 내 사용자 행동을 분석하는 PA(Amplitude, Mixpanel 등)가 필요합니다!

풀스택 마케팅 컨설팅펌 마티니아이오

June 28, 2024

행사명 : [그로스 캠프] Ep.2 - Amplitude by Martinee
장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F
일시: 2024년 6월 5일 ~ 6월 26일 매주 수 오후 7시
대상
![[그로스 캠프] Ep.2 Amplitude by Martinee 수강생](https://cdn.prod.website-files.com/656d3c53a795ed37cbbc9e32/66a75eb14b12ce73f3383363_667d2bab0aba24c743ba89ea_DSC04058.jpeg)
그로스 캠프 2기는 웨비나 없이 LV. 1, LV. 2, LV. 3, LV. Expert 총 4번의 세션으로 진행되었고, 레벨이 올라갈수록 실무에 활용가능한 앰플리튜드의 고급 기능까지 배웠습니다.
실습 세션의 경우, 실무에 바로 적용 가능하도록 데모 계정을 통해 직접 앰플리튜드의 차트와 기능을 살펴보았습니다.
세부적으로 확인하고 싶은 유저 데이터를 직접 세팅해보고 집계 기간에 따른 차이를 살펴보며 앰플리튜드 차트 활용 시 주의할 점들까지 알아보았습니다.
![[그로스 캠프] Ep.2 Amplitude by Martinee 퀴즈 화면](https://cdn.prod.website-files.com/656d3c53a795ed37cbbc9e32/66a75eb14b12ce73f338335d_667d2c857390803b3d43d8b8_%25EC%258A%25A4%25ED%2581%25AC%25EB%25A6%25B0%25EC%2583%25B7%25202024-06-27%2520180738.png)
각 세션 이후에는 간단한 퀴즈를 통해 배웠던 내용을 쉽게 잊지 않을 수 있었습니다.

후기 포스팅을 포함하여 적극적으로 참여해주신 분들께는 마티니가 직접 만든 108장 분량 앰플리튜드 가이드북까지 전달드려서 캠프 종료 후에도 앰플리튜드 기능들을 하나씩 적용해보실 수 있습니다.
이렇게 아낌없이 전수해드리는 그로스 캠프, 다음 번엔 놓치면 안되겠죠?
![[그로스 캠프] Ep.2 Amplitude by Martinee 강사 이재철](https://cdn.prod.website-files.com/656d3c53a795ed37cbbc9e32/66a75eb14b12ce73f3383367_667d2db3cf699c9d09db859f_DSC04103.jpeg)
LV.1 ‘탐색적 데이터 분석(EDA)과 가설 발견을 위한 분석 기초’ 세션에서는 앰플리튜드를 다루기 전에 알아야 할 사항과 앰플리튜드의 활용 목적, 구조, 데이터 택소노미 (Data Taxonomy) 설계에 대해 알아보았고 앰플리튜드의 필수 차트인 세그멘테이션 (Segmentation)과 퍼널 (Funnel), 리텐션 (Retention) 차트를 활용하여 분석 기초를 진행해보았습니다.
차트 기능들을 활용할 때는 앰플리튜드에서 정의한 모듈과 필터의 역할을 명확하게 이해해야 하는데요. 이벤트, 유저, 메트릭 모듈 등 그룹을 쪼개고 측정 기준을 정의할 때 Uniques, Active %, Average, User & Event Property 등이 각각 어떤 의미를 가지고 있는지와 라인, 영역, 바 차트들을 어떤 상황에서 활용하는지 배웠습니다.
세부적으로 예시 사례를 기반으로 한 예제 문제 실습을 통해 각 차트별 적합한 활용법을 익혀보는 시간이었습니다.
LV.2 ‘Cohort / LTV / Lifecycle 분석을 활용한 제품 분석 & 유저 분석 심화’ 세션에서는 DAU & MAU와 LifeCycle, Revenue와 LTV, Sign up과 Engagement를 살펴보고 코호트 (Cohort) 분석 정의와 활용에 대해 알아보았습니다.
MAU를 확인할 때는 실질적으로 성장하고 있는지 잘 확인해야 하는데 Formula 기능을 사용하여 서비스의 MAU가 성장하고 있는지를 세그먼트 차트(Segment Chart)를 직접 활용해보며 확인해보았습니다. 라이프사이클 차트(Lifecycle Chart)를 통해서 휴면, 이탈, 유입 사용자의 비중을 살펴보며 실질적으로 MAU가 성장하고 있는지 점검할 수 있었습니다.
하지만 유저 라이프사이클은 매출을 보장해주지 못하기에 LTV까지 꼭! 확인해야 한다는 사실을 잊지 마세요!
코호트 차트 기능을 통해서는 유저의 시계열 데이터를 확인하고 인사이트를 도출할 수 있는데요.
위 예시와 같이 유저 별 행동들을 상세하게 쪼개서 살펴볼 수 있습니다.
지난 한 달 동안 장바구니에 상품을 담았지만 구매는 하지 않은 유저 분석, 회원가입 이후 7일 이내 구매를 하는 유저와 아닌 유저를 비교해보는 예제를 통해 코호트 차트를 활용해보았습니다.
코호트를 메타나 CRM툴로 보내주기까지 한다면 매우 잘 활용할 수 있게 되겠죠!
LV.3 ‘비즈니스 성장을 위한 유저 여정 분석(AARRR)과 그로스 모델링’ 세션에서는 앰플리튜드에서 대시보드를 구축하는 과정과 AARRR 프레임 워크(Framework)의 각 단계인 획득 (Acquisition) , 활성화 (Activation), 수익 (Revenue), 재방문 (Retention), 추천 (Referral)의 유저 여정 분석과 그로스 모델링에 대해 배우는 시간을 가졌습니다.
LV. Expert 'Performance & CRM & Growth 분석에 대한 실행을 위한 마케팅 분석 & 자동화 Case Study' 세션에서는 MMP & PA & CRM 솔루션의 연동을 통한 통합 마케팅 환경을 구축하는 이유와 방법에 대해 그 중요성과 과정을 세부적으로 실제 기업 사례를 통해 알아보았습니다.
제품을 많이, 잘 판매하기 위해서 프로모션을 진행하는데 발생하는 매출에 대해 정말 프로모션의 영향인지 확인하기 위해 증분 분석을 진행합니다. Amplitude 퍼널 차트를 통해 실험 집단을 분리해서 A/B 테스트를 진행하여 프로모션의 유효성을 검증하는 과정 공유해드렸습니다.
이외에도 클러스터링 기능을 통한 라플 유저와 일반 유저의 여정 분석 및 비교 방법과 연관 규칙 분석을 통한 카테고리 내 상품별 연관성을 파악하는 방법에 대해서도 배웠습니다.

살펴본 데이터가 비즈니스에 따라 상이하거나 세션 중 어려운 부분이 있어도 QnA를 통해 상세하게 답변드리고 함께 살펴보며 자신의 비즈니스에 적합한 최적의 활용법을 익힐 수 있는 시간이었습니다.
![[그로스 캠프] Ep.2 Amplitude by Martinee 종료 후 단체사진](https://cdn.prod.website-files.com/656d3c53a795ed37cbbc9e32/66a75eb14b12ce73f338337b_667d30bff326c55e01c91c48_DSC04402.jpeg)
그로스 캠프가 1기에 이어 2기까지 1달 동안 많은 분들의 적극적인 참여 속에 마무리 되었습니다.
LV. 1 세션부터 마지막까지 많은 분들깨서 남겨주신 후기를 확인해보세요!
![[그로스 캠프] Ep.2 Amplitude by Martinee 만족도 결과](https://cdn.prod.website-files.com/656d3c53a795ed37cbbc9e32/66a75eb14b12ce73f338336a_667d33d59fe896ae536e6d77_%25EC%258A%25A4%25ED%2581%25AC%25EB%25A6%25B0%25EC%2583%25B7%25202024-06-27%2520183636.png)
마티니가 여러분의 비즈니스 성공을 위해 언제나 함께 합니다.

June 28, 2024
그로스마케팅의 기본은 분석입니다. 분석 툴, 주로 Analytics라고 많이 이야기하죠. Google Analytics가 대표적이고요. 이외 Product Analytics라고 했을 때 Mixpanel(믹스패널), Amplitude(앰플리튜드) 등의 솔루션이 있습니다.

프로덕트 분석은 사용자들이 디지털 프로덕트를 쓰는 방식을 이해해보는 것입니다. 사용자의 행동 데이터를 분석하고, 전환 기회를 파악하고, 사용자의 평생 가치(LTV: Long Time Value)를 높이는 경험을 만들어 사용자를 비즈니스의 핵심으로 만듭니다.
프로덕트 분석을 통해 사용자의 실시간 참여 및 행동 데이터를 추적, 시각화, 분석하여 전체 고객 여정(User Journey)을 최적화할 수 있습니다. 사용자의 라이프사이클 모든 단계를 데이터로 확인하여 디지털 경험을 개선하고, 충성도를 확보하고, 비즈니스 성과로 연결하도록 지원합니다.

(사용자 여정 예시) 광고를 클릭하고 ~ 계정을 생성하고(Onboarding Process라고 함) ~ 가입하고 ~ 기능 A를 경험하고 ~ 모바일로 로그인하고 ~ 첫구매를 하고 ~ 기능 B를 경험하고 ~ 기능 C를 경험하고 ~ 앱푸시를 받고 ~ 구독할 것 같은데 ~ A/B 테스트를 경험하고 ~ 파워 유저가 되고 ~ 남에게 추천하고...
위와 같은 사용자 여정 중에서 하기 질문에 앰플리튜드를 통해서 답할 수 있습니다.
프로덕트 분석이라고 하면 거창해 보이지만 실전은 생각보다 단순합니다. 커머스에서 가장 중요한 지표가 무엇일까요? 바로 매출/주문수/객단가/건단가입니다.
매출=주문수X건단가, 매출=주문자수X객단가 개념으로, 결국 '매출'이 가장 중요한데요.
동일한 매출을 기준으로 주문수가 많아지면 건단가가 낮아지고, 건단가가 높아지면 주문수가 적어집니다. 아주 당연한 얘기지만, 이 내용이 무엇과 연관이 있을까요? 바로 물류비입니다.
건단가가 낮아서 주문수가 많아지면 택배 물량이 많아집니다. 물론 합배송이 가능하냐, 물류 체계가 자체 배송이냐 위탁 배송이냐, 물류 센터가 있느냐 등에 따라 상황은 다를 수 있겠지만 대개 커머스는 주문수와 건단가 중 굳이 택한다면, 건단가를 높이고 주문수를 줄이는 것이 좋습니다. (객단가는 유저수와 객단가를 둘 다 올리는 게 좋고요...ㅎㅎ)

*매출, 주문수, 객단가, 건단가 차트 모두 '주문 완료'/'구매 완료'/'결제 완료' 와 같은 이벤트와 '주문 금액'/'구매 금액'/'결제 금액'을 뜻하는 이벤트 프로퍼티가 필수입니다.
*여기서 이벤트와 프로퍼티는 모두 개별적으로 설정되는 것으로 통용되는 단어가 아님을 참조해주세요.
1. Segmentation by 에서 주문 완료 이벤트를 설정해줍니다.
해당 택소노미에서는 total_items_order_completed 가 주문 완료/결제 완료 이벤트입니다.
그리고 by order_total 이라는 이벤트 프로퍼티를 사용하여 값을 표현해줍니다.
2. ...performed by Any Users는 따로 설정하지 않아도 됩니다. (전체 유저의 매출을 보는 것이고, 특정 유저의 행동을 보고자 하는 것이 아니니까요.)
3. ...measured as 에서 'Properties'를 선택하고 Sum of Property Value를 설정합니다.
4. 일자까지 설정해주면 그래프가 구현됩니다!
5. 그래프 하단에는 데이터 테이블이 표 형식으로도 나오고, 이는 CSV로 다운로드 받을 수 있습니다.


주문수는 쉽습니다! ...measured as Sum of Property Value를 Event Property로 바꿔주면 됩니다.
매출이 구매 이벤트의 금액의 총합이었다면, 주문수는 이벤트가 발생한 수이기 때문입니다.

Event Totals로 바꿨는데 그래프가 조금 이상하죠? order_total이라는 주문금액값이 grouped by 필터로 걸려있어서 그렇습니다. 금액값 별로 어떻게 구성되어져있는지 보여주는 거죠. 해당 필터를 지워주면 됩니다.

객단가는 매출/주문자수입니다. 그러므로 매출=주문완료 이벤트(+order_total 프로퍼티)의 PROPSUM (PropertySUM)/주문완료 이벤트의 유니크(사용자수)로 수식을 만들어서 적용하면 됩니다. 즉 객단가는 PROPSUM/UNIQUES입니다.
객단가의 추이를 과거와 비교할 수도 있습니다. Comparing to date range ending _ 여기서 일자를 설정하여 두 개의 그래프로 구현되도록 할 수 있습니다. 과거 일자와 비교하면 그 시점의 유저가 **[Previous]**로 표시되고, 이후 시점의 유저가 All User로 표시됩니다.

건단가는 매출/주문수입니다. 그러므로 주문완료 이벤트의 속성값, 주문액 평균을 확인하면 됩니다. ...measured as Average of Property Value로 설정해줍니다.

건단가는 주로 프로모션을 진행할 때 부차적으로 확인합니다. 평상시 대비 프로모션 진행 시에 카테고리/브랜드/상품/장바구니 할인 쿠폰이 발급되어 건단가가 낮아지는 경우가 많기 때문입니다.
건단가/객단가는 대개 유사합니다. 다만 예외도 존재합니다. 리셀러가 커머스에 많은 경우, 상품을 대량하는 구매하므로 경우 주문수가 주문자수보다 월등히 많아 건단가는 낮고, 객단가는 높을 수 있습니다.
건단가/객단가는 시즈널리티를 탑니다. 특히 의류 커머스의 경우 S/S에는 반팔 티셔츠가 주가 되기에 객단/건단이 낮아지고, F/W에는 아우터 상품이 메인이 되면서 객단/건단이 높아집니다.
대시보드 한 판에 차트들을 모을 수 있습니다. 매출도, 구매전환율도, 상품수도 여러 필터로 쪼개보면서 프로덕트의 현황을 확인할 수 있습니다.

앰플리튜드 차트로 확인한 데이터들은 구글 스프레드시트로 이전 성과들과 비교하거나, 노션으로 정리하거나, 간단하게는 슬랙으로 정리하여 공유합니다.



그로스마케터가프로모션/쿠폰 분석을 하는 과정 중에 앰플리튜드로 세그먼트 차트 (커머스에 꼭 필요한 매출, 주문수, 건단가, 객단가) 그리는 법을 알아보았습니다! 감사합니다.
풀스택 마케팅 컨설팅펌 마티니아이오

June 26, 2024
그로스해킹은 Growth와 Hacking의 조합, 그로스마케팅은 Growth와 Marketing의 조합으로 두 개념 다 '성장'을 위함이지만 해킹은 어떤 수단을 동원할지 한정짓지 않는 것이고 마케팅은 마케팅 측면에 집중한 것입니다.
AARRR 프레임워크가 왜 중요할까요? 그로스마케팅의 범위가 모든 마케팅을 포괄하는 만큼, 업무의 우선순위를 정해야 하기 때문입니다. 비즈니스의 특성, 규모, 성숙도에 따라 AARRR 중 현재 집중해야하는 단계를 파악하고 그 부분을 활성화하기 위한 마케팅 캠페인을 운영해야 합니다.
(1) A: Acquisition 획득
(2) A: Activation 활성화
(3) R: Retention 유지(리텐션)
(4) R: Revenue 수익화(매출)
(5) R: Referral 추천
▶️ AARRR 프레임워크 관련된 더 자세한 글은 여기서 확인해주세요.
https://brunch.co.kr/@marketer-emje/11

AARRR 프레임워크의 첫번째 약자인 Acquisition(획득)을 알아보겠습니다. 사용자 획득을 위한 마케팅을 UA 마케팅 (User Acquisition Marketing)이라고 자주 부르는데요. UA마케팅에서 사용하는 광고 매체, 성과 분석 툴, KPI(유입, 가입, 앱설치, 첫구매 등)에 따라 봐야하는 지표, 실제 사례 등을 공유해보겠습니다.


잡코리아에 'UA마케팅'을 검색했을 때의 결과페이지입니다. 넷마블, 크래프톤 등 유명 게임 회사가 좀 보이고, 이외 앱 중심의 커머스 회사인 브랜디도 있네요. UA 마케팅이란 단어를 게임 업계에서 많이 쓴다고는 하는데요, UA 마케터라는 포지션명은 잘 쓰지 않기 때문에 UA 마케팅을 하는 퍼포먼스마케터로 생각할 수 있겠습니다.

AARRR의 첫 단어인 만큼 '획득'은 마케팅 초기 단계로, 유저(사용자)가 서비스에 '획득'되게 만드는 것입니다. 여기서 획득은 서비스 내에서 정의하기 나름이지만 단순히 유입(Traffic, 트래픽)이 될 수도 있고 유입 이후의 가입(Signup, 등록/계정 생성) 혹은 앱 설치 (App Install) 혹은 첫구매 (1st Purchase)일 수도 있습니다. KPI가 무엇이냐에 따라 주의 깊게 봐야하는 지표 또한 달라집니다.

사용자를 획득하고자 하는 UA 마케팅에서는 주로 어떤 광고 매체를 활용할까요? 힌트는 UA마케팅을 검색했을 시 나오는 퍼포먼스마케터의 채용 공고에 있습니다!

· 글로벌 UA 매체 Self-serve: Google, Meta 등
Self-serve: 광고 대행사를 통한 운영이 아닌 직접 운영을 말합니다.
· 마케팅 성과 분석 툴 활용 역량 (Singular, Appsflyer, Firebase, Gamesight, GA 등)
MMP(Mobile Measurement Partners)인 싱귤러와 앱스플라이어가 등장하네요.
· 1st Party Data 활용을 통한 광고 <> 내부 성과 분석
1st Party Data란 우리 서비스에 쌓이는 데이터를 기반으로, 자사 내부 데이터라고 할 수 있습니다. 이에 반대되는 개념이 3rd Party Data로 외부 데이터로, 광고 매체들의 데이터들을 예시로 들 수 있습니다.

· 광고 매체: 메타, 구글, 네이버 SA/DA, 카카오 등
DA는 Display Advertisement(Ads)로 배너 광고, SA는 Search Advertisement(Ads)로 검색 광고를 뜻합니다.
· 분석 트래킹 툴 활용 통한 데이터 분석 (Appsflyer, GA 등)
MMP(Mobile Measurement Partners)인 앱스플라이어가 등장하네요.
· User Acquisition - Activation 퍼널 단계에서 KPI 달성
그로스마케팅은 그로스(Growth)를 위해 무엇이든 하기에 AARRR 프레임워크의 모든 단계와 관련된 업무를 하지만 주로 퍼포먼스마케팅은 AARRR 중의 초기 단계인 Acquisition과 Activation 위주의 업무를 합니다.

· 주요 매체 (Google, NAver, Meta, Kakao) Self-Serve
(*Self-serve: 광고 대행사를 통한 운영이 아닌 직접 운영을 말합니다.)
· 3rd + 1st Party 데이터 분석을 통한 UA 성과 관리
1st Party Data란 우리 서비스에 쌓이는 데이터를 기반으로, 자사 내부 데이터라고 할 수 있습니다. 이에 반대되는 개념이 3rd Party Data로 외부 데이터로, 광고 매체들의 데이터들을 예시로 들 수 있습니다.
보통의 광고 매체(3rd Party)에서는 자신의 매체를 기준으로 성과를 측정하기 때문에 내부 데이터(1st Party)와 수치가 맞지 않는 경우가 많습니다.
ex. 사용자가 3일 전 인스타 배너 광고를 보고 클릭해서 유입되었다가 이탈된 후 다시 네이버 검색 광고를 통해 오늘 유입되어 가입한 경우를 생각해봅시다. 기여기간이 7일이라고 할 때, 인스타그램 및 네이버 매체의 광고 관리자에서 해당 가입이 모두 각자의 성과라고 계수할 수 있습니다. 이렇게 되면 광고 관리자에서 확인된(3rd Party) 가입자 수치는 2명이고, 실제 내부 데이터(1st Party)에서는 1명이겠죠?



'지표'는 특정 현상을 나타내는 수치입니다. 쉽게 말하면 클릭률(CTR:Click-Through Rate)), 클릭당비용(CPC:Cost Per Click), CPM(노출당비용), CPI(설치당비용), PV(페이지뷰), CAC(가입당비용).. 이런 것들 인데요. 배너 광고 및 검색 광고의 효율을 판단할 때 지표들을 기준으로 성과가 좋다/나쁘다를 이야기할 수 있습니다.

지표를 AARRR 프레임워크에 맞추어 구분하고 확인할 수도 있습니다.
Acquisition 관련 대표 지표들
액션을 무엇으로 설정해두었느냐에 따라 달라집니다.

보통 유입/트래픽 캠페인은 일회성 모수인 경우가 많아 (즉 사용자가 서비스를 장기적으로 사용하지 않고 유입만 되었다가 이탈하는 경우) 커머스에서는 가입 및 첫구매를 독려하고, 앱의 중요도가 큰 경우는 앱설치까지 유도하는 경우가 많습니다.
그로스해킹과 그로스마케팅 그리고 그로스마케팅에서의 AARRR 프레임워크 개념을 넘어서 이제는 조금 더 구체적으로 Acquisition 단계의 UA마케팅에 대해서 다뤄봤습니다. 광고 매체나 성과 분석 툴의 경우는 다른 단계에서도 크게 달라지지 않지만 그만큼 중요한 내용이기에 계속 이야기하겠습니다!
풀스택 마케팅 컨설팅펌 마티니아이오

June 25, 2024
퍼포먼스 마케팅에서는 다양한 최적화 전략을 사용하여 목표를 달성할 수 있습니다. 특히, 머신러닝이 주요하게 작용하는 상품들은 최적화를 무엇을 적용하느냐에 따라 성과 결과가 다르게 나타나는데요. 오늘은 매출 증대를 위한 최적화 2가지에 대해 얘기해보고자 합니다. 구매 최적화와 ROAS 최적화. 이 두 최적화는 매출 증대의 목적으로 운영되긴 하지만, 분명한 차이가 존재합니다. 간단하지만, 각 최적화별 정의와 차이점, 어떤 상황에 적용하는게 더 효과가 좋을지에 대해 작성해보고자 합니다.

구매 최적화는 구매 이벤트 최적화, 즉 광고 캠페인을 통해 직접적인 구매 전환을 최대화 하는 것을 목표로 하며, 주로 비용 효율 보다는 구매 자체에 집중합니다. 흔히 알고 있는 이벤트 최적화이며, 이벤트들 중 구매 이벤트 발생에 집중하여, 머신러닝 합니다.
ROAS 최적화는 광고 비용 대비 매출 최대화 하는 것을 목표로 하며, 효율적인 비용 관리와 최대 매출 포커싱하여 최적화 합니다.
ROAS는 위와 같이 계산하며, ROAS은 두 최적화 모두 산출 가능하지만, ROAS 최적화는 ROAS에 보다 집중하여 머신 학습이 진행되는 것을 의미합니다.
구매 최적화는 많은 구매 이벤트를 발생 시키는 것을 목적으로 머신러닝이 작동하여, 상대적으로 객단가가 낮은 상품 운영에 보다 적합하며, ROAS 최적화 대비 더 많은 유저들의 구매를 기대할 수 있습니다.
또한 높은 LTV가 기대되는 산업/제품군의 경우, 구매 최적화 활용이 긍정적입니다.
초기 CPA가 다소 높을 수 있지만, 산업/서비스 특성상 반복 구매를 통한 높은 수익 창출이 가능하여, 구매 최적화를 통해 구매를 이끌어 내는 것이 중요합니다.
ROAS 최적화는 광고비가 제한적이거나 특정 ROI 목표가 있을 때, 주로 적용합니다. 구매 금액에 포커싱하여 학습하여, 비교적 구매 객단가가 높거나, 한명의 유저가 다양한 상품을 구매할 수 있는 경우에 ROAS 최적화가 적합합니다.
특히 게임 업종에서 고래 유저라는 용어를 사용하는데, 고래 유저란 일반 사용자에 비해 높은 구매력을 가지고 있으며, 한번의 결제로도 큰 금액을 소비하는 유저를 의미합니다. 장르별로 고래 유저의 비중은 다르지면, 평균적으로 1%미만, 구매 금액은 과반 내외를 차지합니다. 쇼핑 업종에서는 VVIP라고도 하는 이 고객들은 한번의 구매로도 높은 수익을 창출하여, ROAS 최적화는 이들을 타겟하여 머신 학습 진행하여 상대적으로 적은 광고 비용으로도 높은 매출을 기대할 수 있습니다.
정액제/구독형과 같은 서비스에는 ROAS 최적화 적용에 부적합 합니다.
물론 앞서 말한 상황별 예시가 100% 정답은 아닙니다. 게임 업종이라도, 구매 객단가가 낮은 편이거나, 매칭을 위한 많은 유저가 필요한 경우에는 구매 최적화 상품이 게임에는 더 적합할 수 있습니다. 예산의 여유가 있고, 가설을 테스트해보고자 한다면, 각 최적화별 A/B테스트도 하나의 방안입니다.
캠페인 성과에는 최적화 방식 뿐만 아니라, 타겟에게 소구할 메세지, 크리에이티브의 품질, 어떤 매체를 활용할지, 지면별 경쟁 상황, 시즈널리티 등 다양한 요소들이 작용합니다. 적합한 최적화를 선택하는 것은 성공적인 캠페인을 위한 하나의 옵션이지만, 각 특성을 고려하여 시행착오를 줄이고, 상황에 맞게 적용하여 우수한 성과를 거둘 수 있습니다.