인사이트 - MARTECH

MARTECH_image_thumbnail
FULL FUNNEL

구글서치콘솔 대시보드 | 루커스튜디오 템플릿

July 15, 2024

루커스튜디오 구글서치콘솔 대시보드 템플릿 메인 이미지
구글서치콘솔 대시보드 | 루커스튜디오 템플릿

SEO 분석의 핵심 채널은 구글과 네이버 입니다. 그 중 구글에서는 사이트로 들어오는 유저의 검색 키워드를 분석 할 수 있게 도와주는 구글서치콘솔(GSC)을 제공하고 있습니다. 이를 통해 어떤 키워드가 더 노출과 클릭이 잘 되고 있는지 어떤 키워드가 문제인지를 확인할 수 있습니다.

다만 구글서치콘솔의 기본 목적은 구글이 도메인의 정보를 수집해가는 사이트맵 관리용으로 출발하다 보니 키워드별 깊이있는 통계 분석을 하기는 어렵습니다.

이로 인해 구글서치콘솔의 다소 부족한 통계를 보완하여 더 효과적인 구글 SEO 분석에 도움을 주기 위해 대시보드를 구성하였습니다. 총 4개의 영역으로 구성되어 있으며 각 대시보드의 활용 방식은 아래와 같습니다. SEO 관리를 위해 분석하면 좋을 지표와 방식들에 집중해서 같이 살펴보시면 좋을 것 같습니다.

구글서치콘솔 대시보드 | 루커스튜디오 템플릿
구글서치콘솔 대시보드 | 루커스튜디오 템플릿

Overview

💡 구글서치콘솔 주표 지표 Overview

  • 노출, 클릭, CTR, 평균 순위와 같은 주요 키워드 지표를 확인할 수 있습니다.
  • 각 지표별 상위 5개 키워드를 바로 확인할 수 있습니다.
  • 서비스 노출 키워드 총 수(Unique Keywords)를 알 수 있습니다.
  • 키워드에 따른 웹사이트 페이지(Landing Page) 수를 알 수 있습니다.
  • 서비스의 성격에 따라 집중해야할 Device가 달라질 수 있습니다. Device 별 키워드(쿼리) 수를 알 수 있습니다.
  • 노출, 클릭 등 주요 지표의 시계열 성과를 알 수 있습니다.

루커스튜디오 구글서치콘솔 Overview 대시보드
구글서치콘솔 대시보드 | Overview 대시보드

Page analysis

💡 SEO의 2가지 핵심 분석 축은 키워드와 페이지 입니다. 하나의 페이지에 다양한 키워드가 노출 될 수 있으며, 반대로 하나의 키워드에 여러 페이지가 노출 될 수 있습니다.

  • 키워드와 페이지의 관계를 확인할 수 있습니다.
  • 페이지 기준의 키워드 별 주요 지표의 변화를 확인할 수 있습니다.
  • 페이지별 노출되는 키워드(쿼리)수를 확인할 수 있습니다.

루커스튜디오 구글서치콘솔 페이지 분석 대시보드
구글서치콘솔 대시보드 | Page analysis

Keyword analysis

💡 SEO는 특히나 롱테일 키워드와 노출 순위 관리가 중요합니다. Top Ranking 구간을 두어서 구간 별 키워드 관리를 할 수 있습니다.

  • 노출 순위에 따른 키워드 그룹을 통해 주요 지표를 확인할 수 있습니다.
  • 키워드별 CRT, 평균 노출 순위의 버블차트를 통해 관리 키워드와 우수 키워드를 한 번에 확인할 수 있습니다.
  • 키워드(쿼리)별 세부 지표와 트렌드를 확인할 수 있습니다.

루커스튜디오 구글서치콘솔 키워드 분석 대시보드
구글서치콘솔 대시보드 | Keywords analysis

KPI Trend

💡 SEO는 단기간 지표 변화 확인이 어려운 영역입니다. 긴 시간 간격(보통 주, 월 단위)을 두고 지표의 변화를 관찰하면서 관리합니다.

  • 노출, 클릭, CTR 주요 지표의 주차별 트렌드를 확인할 수 있습니다.

대시보드 보기

대시보드 데모 보기

원본 포스팅 링크

구글서치콘솔 대시보드 | 루커스튜디오 템플릿

MARTECH_image_thumbnail
FULL FUNNEL

Udemy 분석 대시보드 | 루커스튜디오 템플릿

July 10, 2024

Udemy 루커스튜디오 분석 대시보드 메인 이미지
Udemy 분석 대시보드 | 루커스튜디오

Udemy 분석 대시보드 | 루커스튜디오
Udemy 분석 대시보드 | 루커스튜디오

Udemy 교육 커머스 분석 대시보드 템플릿

이번 글에서는 Udemy교육 플랫폼에 대한 분석과 해당 분석을 바탕으로한 대시보드를 그려보려고 합니다. 교육관련 비즈니스나 지식 기반 서비스 운영하는 경우 해당 분석과 대시보드가 참고가 될 수 있을 것입니다.

Kaggle에 올라와 있는 Udemy 데이터를 활용하여 분석을 진행하였습니다. 혹시 데이터가 필요한 분들은 아래 링크를 참고해주세요.

udemy courses 페이지 링크

1) 서비스 특성 확인

Udemy는 글로벌 교육 커머스 플랫폼 입니다. 마케팅이나 데이터 분석 뿐 아니라 개발, 라이프스타일, 비즈니스 등 다양한 분야의 강의들이 판매되고 있습니다. 가격이 그렇게 부담되지 않기 때문에 기회가 되신 다면 한번 들어보시면 좋을듯합니다. 다양한 국가 언어를 제공해 주지만 한글 비율은 높은편은 압니다. 다만 대부분 자막을 제공해주기 때문에 어렵지 않게 양질의 자료들을 보실 수 있습니다.

Udemy 교육 플랫폼 홈페이지
Udemy 교육 플랫폼

국내에서 Udemy와 비슷한 비즈니스 모델로는 패스트캠퍼스, 클래스 101, 인프런 같은 서비스가 있습니다.

클래스 101 / 인프런 / 패스트캠퍼스 웹사이트 페이지
클래스 101 / 인프런 / 패스트캠퍼스

지식 기반 상품을 판매하는 이러한 비즈니스 모델의 특징은 커머스와 크게 다르지 않습니다. 다양한 주제(카테고리 & 브랜드)의 강의(상품)가 있고 고객이 원하는 강의가 있다면 개별 강의를 구매하는 방식으로 구매 여정이 이루어져 있습니다.

  • 주제 = 브랜드
  • 강의 = 상품

일반 상품과 다르게 무형의 상품이다보니 체험 형식의 무료 과정이 활발하게 활용되는 편입니다. 강좌 개설도 자유롭게 할 수 있으며, 강좌에 대한 홍보도 직접 진행할 수 있다보니 스마트스토어에 상품을 직접올려서 판매하는 오픈마켓의 방식과 거의 유사합니다.

해당 분석의 목표는 강좌를 만드는 강의자와 Udemy에서 강좌를 서포트하는 매니저가 사용 할 수 있는 분석과 대시보드 제작을 목적으로 진행하려고합니다. 이를 통해 주요 인기 카테고리와 상위 강좌로 올라가기 위한 조건이나 기준들을 살펴보도록 하겠습니다.

대시보드 데모 보기

2) 주요 분석 항목 정의

데이터 확인

데이터 세트는 총 12개 항목(컬럼)으로 이루어져 있습니다.

  • course_id : 강의 고유 번호
  • course_title : 강의 제목
  • url : 강의 세부 url
  • is_paid : 유료 / 무료 강의 유무
  • price : 강의 가격
  • num_subscribe : 강의 수강생(수강생을 subscribe로 표현)
  • num_review : 강의 후기수
  • num_lectures : 강의내 강좌 수
  • level : 강의 난이도
  • content_duration : 강의 수강 시간
  • published_timestamp : 강의 생성 시기
  • subject : 강의 카테고리
Udemy 데이터 세트 정리표
Udemy 분석 대시보드 | 루커스튜디오

데이터 수는 3682개로 이루어져 있습니다.

EDA 과정

EDA를 통해 기본적으로 데이터의 모양을 살펴보고, 데이터 특징을 파악하며 데이터 퀄리티를 높이는 작업을 합니다.

EDA 진행 전 필수적으로 확인해야하는 단계가 데이터 퀄리티 확인 단계입니다. 이는 '데이터 클리닝' 이라고도 부르는 단계로 데이터 결측치, 데이터 중복, 이상치를 확인하는 단계 입니다. 실제로 해당 Raw 데이터는 결측치가 있는 데이터로 적절한 결측치 처리가 필요하였습니다. 이번 데이터는 결측치가 6개 row에서 발견되어 해당 row를 제거하는 방식으로 진행하였습니다. 만약 결측치가 많다면 보간 방식으로 데이터를 적절하게 채워 분석을 진행할 수 있습니다.

EDA를 통해 몇가지 특징을 확인할 수 있었습니다.

  1. 강의 구독과 리뷰는 특정 강의에 집중되는 경향
  • 구독자수(구매수)나 리뷰 같은 주요 지표를 보면 강의 별 구독자수 편차가 큰것을 확인할 수 있었습니다. 구독자 평균은 3,200명 이지만 중앙값 912명에 히스토그램을 보더라도 특정 구간에 대부분의 강의가 모여있고(신규 개설은 하였지만 관리가 많이 되지 않았거나, 신규 강의 자체가 많은 상황) 구매수가 상위 강좌에 쏠려있는 특징을 보였습니다.

💡 구독자에 따른 강의 코스 별 그룹을 임의로 나누면 분석이 편해질 것 같습니다. (ex. 파레토 법칙)

구독 및 리뷰 수 측정 비교
Udemy 분석 대시보드 | 루커스튜디오

  1. 강의수와 강의 시간의 관계
  • 강의 레벨, 강의 시간은 강의를 새롭게 개설하는 강사가 조정할 수 있는 요소입니다. 구독(매출)지표에 대한 선행지표로 볼 수 있기에 다양한 선행지표와 후행 지표간의 관계성을 확인해보면 좋을 듯합니다. 기술 통계 확인 시 구독자 수 만큼은 아니지만 분포에서 특정 구간에 쏠려 있는것을 확인하였습니다. 해당 컬럼들은 단변량 분석보다 관계성 중심의 상관도 분석을 진행해야 할 것 같습니다.

💡 선행 지표와 후행지표 간의 관계성을 찾아보면 좋을 것 같습니다. 선행지표 후보는 카테고리, 리뷰수, 강의시간, 강의수, 강의가격이 될 수 있습니다.

강의 레벨 및 강의 시간의 관계
Udemy 분석 대시보드 | 루커스튜디오

EDA를 통한 최종 분석 대시보드 구성

  • 최종 목표 KPI : 구독자수, 매출
  • 보조 목표 KPI : 리뷰수
  • 분석 항목 : 구독자, 리뷰, 카테고리, 강좌
  • 보조 분석 항목 : 강의수, 강의레벨, 강의시간

3) 분석 및 대시보드 구성

앞서 진행한 EDA 과정을 통해 분석 대시보드는 주요 지표를 보여주는 Overview와 주요 지표를 드릴다운해서 볼 수 있는 개별 영역으로 나누어서 구성하였습니다.

  • Overview
  • Subscriber(구매자수) 드릴다운
  • Review 드릴다운
  • Category 드릴다운
  • Course(강좌) 드릴다운

각 화면별 자세한 구성은 아래와 같습니다.

Overview

개요 대시보드의 구성은 대부분 유사하게 구성합니다.

루커스튜디오 Udemy 분석 대시보드 Overview
Udemy 분석 대시보드-Overview | 루커스튜디오

주요 KPI와 해당 KPI의 시간별 퍼포먼스를 볼 수 있는 영역을 기본으로 구성합니다. 이외에 주요 지표 구성 요소를 배치하여 가볍게 드릴 다운 해서 볼 수 있는 구성을 합니다.

시간에따른 KPI 성과 영역은 선택 측정항목 기능을 활용하여 측정항목을 자유롭게 변경하며 분석하거나 기간 단위를 일 -> 주 -> 월 로 변경하면서 트렌드를 다양하게 확인할 수 있게 구성하였습니다.

Subscriber Analysis

커머스로 비유하면 교육 산업에서 구독자는 구매자와 동일합니다. 다만 서비스하는 교육과정이 많다보니 적정한 기준으로 교육과정을 나누어 과정 별 특징을 확인하면 분석 편의성을 높일 수 있습니다.

가장 간단한 그룹화 방법 중 하나는 파레토 법칙을 이용하는 방식입니다. 아래 그림과 같이 가장 많은 교육과정 or 상위 10% 기준을 확인한다면 새롭게 강의를 런칭하는 신규 강사의 입장에서 바라봐야할 목표 지표를 세울 수 있습니다.

루커스튜디오 Udemy 구독자 분석 대시보드
Udemy 분석 대시보드-Subscriber | 루커스튜디오

교육 산업의 특징 중 하나는 무료 강의를 통해 플랫폼에 대한 인지를 높이는 전략을 가져가는 것입니다. Udemy 또한 평균 10% 내외의 무료 강의 비율을 보이고 있습니다. 강의 수는 10% 내 외이지만 실제 해당 무료 과정을 통해 플랫폼 경험을 하는 유저 수는 30% 이상 될 정도로 무료 과정은 중요한 역할을 하고 있습니다.

루커스튜디오 Udemy 리뷰 분석 대시보드
Udemy 분석 대시보드-Review | 루커스튜디오

상품을 구매하는데 있어 중요한 항목 중 하나는 누군가의 추천입니다. 공급자는 대부분 상품의 좋은 점을 강조하기 때문에 다른 유사 상품과의 차이가 두드러지지 않습니다. 특히나 비슷한 주제의 강의라면 커리큘럼과 실습방식 외 나머지 강의 요소를 상세페이지에 표현하기 어렵습니다. 강의 전달 방식이나 강의자의 톤, 발성, 논리정연한 강의력 등 실제 강의를 들은 수강생의 생생한 후기는 많은 경우 구매 전환에 매우 큰 영향을 줍니다. 실제로 리뷰와 수강생의 상관도가 높은 것으로 확인되며 상위 5% 강의의 리뷰율은 다른 하위 강의 대비 2배 가까이 높은것을 알 수 있습니다.

카테고리 또는 레벨, 유무료 별 평균 리뷰율을 알았다면 특정 강의의 매출을 높이는 데 있어 하나의 기준이 될 수 있습니다. 평균 대비 리뷰율이 낮다면 단기적으로 리뷰를 높이는 이벤트를 열거나 리뷰가 낮은 부분을 피드백하며 강의 자체의 개선에 활용하는 방식을 가져갈 수 있습니다.

Category Analysis

루커스튜디오 Udemy 카테고리 분석 대시보드
Udemy 분석 대시보드-Category | 루커스튜디오

어떤 카테고리가 현재 인기 있는지 알 수 있습니다. 카테고리에 상관없이 Beginner or All level이 개설 과정수도 많고 매출 비율도 높습니다. 레벨이 올라갈수록 타겟 가능한 사람을 찾는 것도 어렵고 해당 타겟의 구매 전환도 낮은편입니다. 실제로 강사의 입장에서도 레벨이 높아질수록 강의 준비 과정 난이도가 높아지기 때문에 낮은 레벨을 더 선호하는 편입니다.

카테고리 & 레벨 별로 현재 비어있는 과정을 보면서 전략적으로 강의를 개설할 수 있습니다.

Course Analysis

루커스튜디오 Udemy 강의코스 분석 대시보드
Udemy 분석 대시보드-Course | 루커스튜디오

앞서 파레토 법칙에 따라 구독자수 기준 상위 5%, 10%, 20%, 50%, 기타 그룹으로 계급을 나누었습니다. 그리고 상위 그룹과 리뷰의 상관도가 높은 것을 알 수 있었습니다. 즉, 상위 그룹에 올라가기 위해서는 필수적으로 수강생 리뷰가 쌓이고 구매 선순환이 이루어지는 시간이 필요합니다. 따라서 계급별 평균 개설 시간을 보면서 상위 계급에 올라가기 위해 얼마 만큼의 기간이 필요한지 대략적으로 가늠할 수 있습니다.

또한 계급별 주요 지표간 상관도를 보면서 어떤 지표를 우선으로 해서 강의를 만들지 전략적으로 접근할 수 있습니다. 실제 계급 구독수와 강의수 & 강의시간의 상관도가 높은것을 알 수 있습니다.

반대로 구독자수와 강의가격은 생각보다 높은 상관도를 보이지 않습니다. 충분히 유용한 강의수와 시간을 보유하고 있다면 강의 가격은 구매 결정에 상대적으로 낮은 영향력을 보입니다.

4) 마무리

해당 글에서 예시로 활용한 데이터는 과거의 데이터다보니 앞서 도출한 인사이트가 현재 강의 환경과 맞지 않을 수 있습니다. 다만, 분석 과정과 주요 지표 표현 방식 등은 충분히 유효합니다. 앞서 서두에 설명 한 것 처럼 지식 기반 비즈니스가 아닌 일반 커머스 비지니스에서도 해당 분석 흐름과 대시보드 구성을 참고해서 활용해보시면 좋을 것 같습니다.

대시보드 데모 보기

원본 포스팅 링크

Udemy - 교육 커머스 분석 대시보드

MARTECH_image_thumbnail
GROWTH

리텐션(Retention)이란?

July 10, 2024

1. 리텐션(Retention)이란?

리텐션(Retention)은 고객이나 사용자가 특정 기간 동안 어떤 제품이나 서비스에 계속 관여하거나 이용하는 비율을 말합니다. 즉, 얼마나 많은 사용자가 시간이 지남에 따라 제품이나 서비스를 계속 사용하는지를 나타내는 지표입니다. 높은 리텐션율은 고객 충성도가 높고, 제품이나 서비스에 대한 만족도가 높음을 의미합니다.

리텐션이 중요한 이유

리텐션을 지속적으로 측정하고 관리하는 것이 중요한 이유는 여러가지가 있습니다. 리텐션은 단순히 고객이 제품이나 서비스를 계속 사용하는 것을 넘어서 기업의 지속가능성과 직접적으로 연결되는 핵심 지표입니다. 리텐션이 중요한 이유를 좀 더 자세히 살펴보면 다음과 같습니다.

  • 비용 효율성
    : 신규 고객을 유치하는 것보다 기존 고객을 유지하는 것이 훨씬 더 적은 비용이 사용됩니다. Harvard Business Review에 따르면 신규 고객 한 명을 확보하는 것이 기존 고객 유지에 비해 5~25배의 비용이 든다고 합니다. 따라서 리텐션을 높이면, 마케팅 및 영업 비용을 절감하고, 장기적으로는 더 높은 수익성으로 이어질 수 있습니다.
  • 수익성 증가
    : 리텐션이 높은 고객은 브랜드에 대한 충성도가 높고, 시간이 지남에 따라 더 많은 제품을 구매하거나 서비스를 이용할 가능성이 높습니다. 이는 평균 거래 규모의 증가, 구매 빈도의 상승, 즉, 총 수익 증가로 이어집니다.

2. 리텐션 측정기준

리텐션을 측정하는 기준에는 다양한 방법이 존재합니다. 그 중 Amplitude에서 확인할 수 있는 리텐션의 종류인 ‘N-day Retention’과 ‘Unbounded Retention’에 대해 좀 더 자세히 알아보려고 합니다.


앰플리튜드 리텐션 차트 화면
‘N-day Retention’과 ‘Unbounded Retention’

2-1. N-day Retention

N-day Retention은 사용자가 처음 제품이나 서비스를 이용한 후 특정 일수(N일) 후에도 계속 이용하는지를 측정하는 방법입니다. 예를 들어, 7-day Retention은 사용자가 서비스를 처음 이용한 후 7일째 되는 날에도 서비스를 이용하는 비율을 의미합니다. 해당 리텐션은 초기 사용자 참여, 온보딩, 새로운 기능, 단기 마케팅 캠페인 분석을 위해 사용됩니다.

2-2. Unbounded Retention

Unbounded Retention은 특정 기간 동안 사용자가 최소 한 번이라도 제품이나 서비스를 이용했는지를 측정하는 방법입니다. 이 방법은 시간이 지나도 사용자가 이탈하지 않고 계속해서 제품을 사용했는지의 여부만을 고려합니다. 해당 리텐션은 장기적인 참여, 고객 충성도, 반복 구매, 주기적인 콘텐츠 업데이트 분석을 위해 사용됩니다.

3. 리텐션 차트&리텐션 커브

3-1. 리텐션 차트란?

앰플리튜드 리텐션 - 코호트 차트


리텐션 차트는 시간에 따른 사용자의 이탈 및 유지 패턴을 시각적으로 표현한 그래프입니다. 이 차트는 특정 기간 동안 사용자 그룹의 리텐션율 변화를 보여줍니다. 리텐션 차트를 통해 크게 행 기준 분석과 열 기준 분석을 수행할 수 있습니다.

앰플리튜드 리텐션 - 코호트 차트 열기준과 행기준 설명
코호트 차트 열 기준 분석
  • 단일 시점에서 코호트 그룹을 비교합니다. 이 방법은 서로 다른 코호트끼리의 비교를 가능하게하여 그룹간의 성과를 측정할 수 있습니다.

코호트 차트 행 기준 분석
  • 일정기간 동안 코호트 그룹을 추적하여 유지율이 어떻게 변하는지 관찰하는 작업으로 장기적인 관점에서 사용자 행동의 추세와 패턴을 이해하는데 도움이 됩니다.

3-2. 리텐션 커브란?

앰플리튜드 리텐션 커브


리텐션 커브는 시간에 따른 리텐션율의 변화를 나타낸 것입니다. 이 커브는 초기 사용자 참여 이후 리텐션율의 감소 패턴을 한눈에 파악할 수 있게 해줍니다.

리텐션 커브는 감소형태에 따라 유형를 크게 3가지로 나눌 수 있습니다.

리텐션 커브 3가지 유형

3-2-1. Declining Curves

시간이 지남에 따라 사용자 참여가 감소되는 패턴의 커브입니다. 이는 가장 흔히 보이는 커브의 형태로, 초기참여 이후 사용자의 관심이 감소됨을 의미합니다.

  • 특징
    • 사용자가 꾸준히 제품을 떠나고 있으며 이는 사용자 만족도나 참여도에 지속적인 문제가 있음을 나타냅니다.
    • 제품이 장기간 사용자를 유지하지 못하고 지속적인 가치를 제공하지 못하는 문제가 있음을 시사합니다.

3-2-2. Flattening Curves

초기 감소 후 리텐션율이 안정적으로 유지되는 패턴의 커브입니다. 이는 사용자들이 제품이나 서비스에 익숙해지고 일정수준의 참여를 계속해서 유지함을 나타냅니다.

  • 특징
    • 초기 감소 후 특정 시점부터 곡선이 평평해 지는데, 이는 나머지 사용자 사이에서 안정적인 유지율을 나타내는 것을 시사합니다.

3-2-3. Smiling Curves

리텐션 감소 후 시간이 지남에 따라 다시 증가하는 패턴의 커브입니다. 이는 매우 긍정적인 상황으로, 사용자들이 초기 이탈후 일정시간이 지나 다시 제품이나 서비스에 관심을 가지기 시작함을 의미합니다.

  • 특징
    • 초기 감소 이후 특정 시점부터 곡선이 상승하기 시작하여 시간이 지남에 따라 사용자가 다시 돌아오거나 참여도가 향상됨을 나타냅니다.
      • 사용자는 처음에는 떠날 수 있지만 제품의 가치를 깨닫거나 업데이트나 재참여 캠페인과 같은 특정 개입으로 인해 다시 돌아올 수 있습니다.

원본 포스팅 링크

리텐션(Retention)이란?

MARTECH_image_thumbnail
FULL FUNNEL

풍선차트로 SEO 분석 하기

July 8, 2024

📊풍선차트로 SEO 분석 하기

블로그를 하다보니 SEO에 대한 키워드 최적화와 분석을 많이 하고 있습니다.

그 중 최근 많이 활용하는 분석 방법 중 하나는 풍선 차트를 활용한 키워드 분석입니다.

풍선(버블) 차트는 여러개의 측정기준을 두고 분석할 수 있다보니, SEO 같이 단일 키워드 별로 다양한 측정기준 간 비교를 해야하는 경우 유용합니다.

아래는 풍선차트로 분석하는 SEO 예시입니다.

<풍선 차트 만들기>

풍선차트로 SEO 분석 하기

X축 : 클릭율(CTR)

Y축 : 노출 순위(Average position)

풍선크기 : 노출(Impression)

풍선색상 : 기기 카테고리(Device Category)

1. 날짜 필터SEO는 즉각적인 효과 분석보단 장기간에 걸친 데이터 분석이 필요합니다. 기간별 키워드 지표의 변화를 확인할 수 있습니다.

2. 검색어(Query)관리해야하는 키워드가 수 백개를 넘어갑니다. 관리 할 키워드가 많은 경우 노출이나 클릭 기준으로 키워드 필터를 걸어서 관리하면 편합니다.

3. 기기서비스의 특성에 따라 PC, MO 중 검색 선호 기기가 다른 경우가 많습니다.

4. 국가글로벌 서비스의 경우 국가별로 반응하는 키워드와 키워드별 지표 트렌드가 달라질 수 있습니다.

5. 최소노출량롱테일 키워드는 노출량이 적지만 키워드의 양이 많습니다. 따라서 최소 노출량 필터를 두어서 분석 편의성을 높일 수 있습니다.

6. 축 평균값각 축의 평균값 선을 두어서 평균값 기준 키워드 그룹을 4분면으로 나누어 관리할 수 있습니다.

7. Y축 역방향Y축은 평균 게재순위 입니다. 기본적으로 1에 가까울 수록 좋은 키워드 그룹이기 때문에 Y축 방향을 반전 시켜 1이 위쪽으로 배치될 수 있게 하면 분석 편의성을 가질 수 있습니다.

8. 로그 스케일키워드간 지표의 차이가 크게 발생하는 경우 로그 스케일을 사용하면 차트에 분포되어 있는 검색어를 더 쉽게 파악할 수 있습니다.

👉 관련 대시보드 : https://lnkd.in/gQQ9_8r7

분석은 축 평균 기준으로 4개 분면으로 키워드 그룹을 나누어 전략을 다르게 가져갈 수 있습니다.

풍선차트로 SEO 분석 하기

1️사분면 : 노출순위가 높고, CTR도 우수한 유효 키워드 그룹

2️사분면 : 노출순위가 낮고, CTR은 높은 잠재 우수 키워드

3️사분면 : 노출순위도 낮고, CTR도 낮은 문제 키워드 그룹

4️사분면 : 노출순위가 높지만, CTR은 낮은 관리 필요 그룹

👉 자세한 SEO 분석 전략 : https://lnkd.in/gJDbrBzp

► 구글 서치콘솔 데이터를 통해 풍선 차트 생성과 분석을 간단하게 진행할 수 있습니다.

► 혹시나 블로그를 하고 계시다면 구글 서치콘솔 설정과 대시보드 구축을 해보세요.

원본 포스팅 링크

📊풍선차트로 SEO 분석 하기

MARTECH_image_thumbnail
GROWTH

혼자서 GA4 연동하고 루커스튜디오 대시보드 만들기-3

July 4, 2024

태그 설치를 끝낸 후 GA4 대시보드에서 데이터가 잘 수집되는 것을 확인했다면 이제 데이터 시각화 기능인 루커 대시보드와 연동하여 나만의 대시보드를 만들 수 있다.

GA4의 유입 데이터와 내부 데이터를 연동하여 한 화면에서 비즈니스 데이터를 확인할 수 있기 때문에 데이터 기반 인사이트를 용이하게 확인할 수 있다. 내 웹사이트에 어떤 경로로 들어왔는지, 어느 페이지에서 이탈률이 높은지, *스크롤은 몇 % 내리는지, 어느 광고 매체에서 구매 전환 혹은 매출이 많이 일어나는지 한 화면에서 확인이 가능하다.

💡 * 이커머스에서는 보통 상세페이지의 스크롤을 파악하여 어디 콘텐츠 소구점에서 유저의 이탈이 많이 일어나는지 확인할 수 있다. 스크롤(scroll) 이벤트는 구글 GTM에서 추적할 수 있도록 지원하고 있어 쉽게 확인이 가능하다. gtag를 (기본 GA4 태그)를 설치하면 자동 태그로 GA4 대시보드에서도 확인이 가능하나 정확하지 않아 가급적이면 GTM을 통해 스크롤 태그를 설치할 것을 권장한다.

그리고 루커 대시보드는 gmail 계정만 있으면 관련 담당자와 쉽게 공유할 수 있으므로 타 부서와 긴밀하게 매출과 비즈니스 KPI를 관리할 수 있다는 장점이 있다.

1. 루커 대시보드와 데이터 연동하기

루커 대시보드에서 차트를 구현할 때 연동하는 데이터 세트를 ‘데이터 소스’라고 한다. 데이터 소스는 루커 스튜디오의 커넥터를 클릭하여 쉽게 연동이 가능한데, 루커는  무려 1,000개 이상의 다양한 데이터 소스를 간편하게 연동할 수 있도록 지원하고 있다. (연동 가능한 데이터 소스 종류 확인하기)

만약 내가 기존에 적재하고 있던 구글 시트 보고서의 데이터와 GA4 데이터를 기반으로 대시보드를 만들고자 한다면 구글시트와 GA4 계정을 커넥터에 연결해서 확인할 수 있다.

1-1. 우선, 루커 스튜디오 홈페이지에 접속하여 빈 보고서를 클릭한다. (링크)

루커 스튜디오 빈 보고서 클릭

1-2. 나의 데이터를 확인한 후 커텍트를 클릭하여 루커 스튜디오와 연결한다.

구글 시트 보고서와 GA4 데이터를 연결해야 하기문에 커넥터에서 ‘Google 애널리틱스’와 Google Sheet를 클릭하여 연동을 시작한다. 구글 시트는 워크시트별로 연동이 가능하고 GA4는 해당 계정에 대해 권한이 있어야 연동이 가능하다. 다만 이때 각 열의 헤더(제목)이 있어야 하고 헤더는 중복되면 안된다.

루커 스튜디오와 구글애널리틱스, 구글 시트 연동

1-3. 루커 스튜디오 기본 화면 이해하기

루커 스튜디오는 ‘보기’모드와 ‘수정’모드가 있다. 보기 모드는 편집자 권한이 없는 사람이 대시보드가 보이는 형태를 확인할 수 있고 편집자 모드가 있을 경우 ‘수정’모드에서 각 차트와 대시보드 스타일에 대한 요소들을 생성 및 수정할 수 있다.

Image 1
보기모드
Image 2
수정모드

수정 모드에서는 가장 우측 데이터, 속성, 필터 표시줄 이모티콘을 클릭함으로써 각 기능에 대한 툴바를 숨김 처리할 수 있다.

루커스튜디오 대시보드 수정모드

(상단 좌측부터 순서대로 설명)

  • 데이터 추가
    • 데이터 소스 추가
  • 차트 추가

[✔︎ 가장 많이 쓰는 차트 예시]

(1) 막대그래프 및 열 차트 (링크)

막대그래프 및 열 차트 예시

(2) 선 차트 및 콤보 차트 (링크)

선 차트 및 콤보 차트 예시

(3) 스코어카드 (링크)

1개의 측정항목에 대한 요약 수치를 표시할 수 있다. 전자상거래 대시보드에서는 총매출, 구매 수, 광고소진액, 신규 유저, MAU, DAU에 대한 수치를 증감률과 함께 확인할 수 있다.

 스코어카드 예시

(4) 시계열 (링크)

시간의 흐름에 따라 데이터가 어떻게 변화되는지 확인할 수 있다. 전자상거래 대시보드에서는 일별 구매수, 세션별 일별 구매자 수, 일별 광고비 등을 확인할 수 있다.

시계열 차트 예시

(5) 원형 차트 (링크)

값 비율 차이가 큰 데이터를 비교할 때 많이 쓰는 차트로 전자상거래 대시보드에서는 광고비 비중, 채널별 비중을 확인할 수 있다.

원형 차트 예시

(6) 트리맵 차트 (링크)

값이 큰 데이터 항목일수록 색상이 진하고 크기가 크게 표시되는 차트로 계층별로 정리하여 비교할 수 있다는 장점이 있다.

트리맵 차트 예시

(7) 피벗 테이블

피벗 테이블 예시
  • 컨트롤 추가
    • 차트 필터 추가
      • 날짜, 검색, 드롭 다운, 체크박스 필터 기능 추가 가능
  • 링크, 이미지, 도형 이모티콘
    • 링크, 이미지, 도형 삽입 가능

2. 루커 대시보드 내용 기획하기

루커 시보드에서 데이터를 연결하고 어떤 차트를 구현할 수 있는지 파악이 완료되었다면 실제로 내가 활용할 대시보드의 목차를 기획해야 한다. 대시보드를 이용하는 사용자가 누군지 파악해야 하고 가능하면 사용자 관점에서 보기 편리하도록 대시보드를 구성해야 한다. 즉, 사용자가 무엇을 알고 싶어 하는지를 파악해야 한다.

가장 좋은 방법은 파악한 사용자들과 함께 회의를 통해 목차를 구성하고 아웃라인을 작성하는 것이지만 그것이 어렵다면 목차라도 함께 작성해야 한다. 사용자가 대시보드를 보고 의미를 쉽게 파악하지 못하거나, 알고 싶은 데이터가 대시보드에 반영되어 있지 않다면 지금까지 노력을 기울여 만든 대시보드의 활용성을 떨어지기 때문에 이 부분을 가장 중점적으로 생각해야 한다.

이커머스 서비스에서 가장 기본적으로 파악해야 하는 그래프를 바탕으로 대시보드 목차를 생각해 보면 다음과 같다.

💡 대시보드 목차 예시
  • Overview
    • DAU
    • WAU
    • MAU
    • 구매자 수, 구매 수, 구매 전환 금액
    • 구매자 수 비교
    • 광고 성과 요약
  • Advertisement
    • 광고 예산
    • 광고 성과
  • Channel Analysis
    • 채널별 매출
    • 채널별 매출 비중
    • 채널별 매출 건수 비중
    • 채널별 객단가
    • 채널별 건단가
  • Creative Analysis
    • 소재별 성과
  • Product Analysis
    • 상품별 매출
    • 장바구니 조회 대비 매출이 높은 상품
    • 상세조회 대비 매출이 높은 상품
    • 채널별 상위 상품
  • User Analysis (GA4)
    • 인구통계학 정보

3. 차트 구현하기

3-1. 측정기준, 측정항목 이해하기

GA4, 루커 스튜디오와 같이 구글 플랫폼을 활용할 때 많이 들어볼 수 있는 측정항목과 측정 기준의 개념을 이해하고 가는 것이 좋다.

측정기준, 측정항목 구분 이미지

Dimensions (측정기준)

  • 값 (Value)

Metrics (측정항목)

  • 숫자
  • 계산된 필드(계산 수식) 적용이 가능하다.
    • e.g. CPC (계산된 필드): SUM(지출금액)/SUM(클릭)

3-2. 계산된 필드 생성하고 차트 만들기

 매체별 광고 성과에 대한 피벗 테이블 차트

예를 들어 위 그림처럼 매체별 광고 성과에 대한 피벗 테이블 차트를 구현하고 대시보드에 추가하려고 한다면 어떻게 해야 할까?

루커 스튜디오 대시보드 차트 추가 - 피봇 테이블

피벗 테이블을 추가하고 수식을 걸지 않은 광고비, 노출, 클릭, 구매, 구매금액까지는 데이터 소스에서 추출하여 측정항목을 선택하여 그대로 차트에 넣으면 된다. 단, CPC, CTR, ROAS의 경우 수식 계산이 필요한데 계산된 필드로 만들어서 측정항목으로 추가할 수 있다.

루커 스튜디오 대시보드 계산된 필드 추가

계산된 필드 생성을 클릭하면 필드 생성 창이 뜨는데, 원하는 측정항목 이름으로 필드 이름을 적은 후 수식에 루커 스튜디오 함수 목록을 참고하여 수식을 입력한다.

[✔︎ 많이 쓰는 함수식]

(1) CPC

SUM(광고비) / SUM(클릭수)

(2) CTR

SUM(클릭) / SUM(노출)

(3) ROAS

SUM(구매금액) / SUM(광고비)

(4) CPI

SUM(광고비) / SUM(설치수)

(5) CPA (구매)

SUM(광고비) / SUM(구매이벤트수)

* 루커스튜디오 함수 목록 (링크)

루커 스튜디오 대시보드 계산된 필드 구현

이렇게 맞춤으로 생성한 계산된 필드는 데이터 툴바에서 파란색으로 필드명이 보이게 된다. 대시보드 화면에 추가한 차트를 클릭하여 해당 차트의 측정항목에 필드명을 가져온다.

4. 스타일 다듬기

루커 스튜디오 대시보드 스타일 편집

속성 툴바에서는 설정과 스타일 탭 두 가지가 있는데 설정 탭에서는 차트에 들어가는 측정항목에 대한 추가/삭제, 필터, 정렬을 설정할 수 있고 스타일 툴바에서는 차트 색, 소수점, 글꼴, 데이터 없음 표시 종류 등 디자인과 관련한 항목을 설정할 수 있다.

(1) 소수점 변경하는 방법

  • 소수점 정밀도를 클릭하여 구매 금액 데이터가 USD인 경우 소수점 2자리 또는 정수로 임의로 설정할 수 있다.
루커 스튜디오 대시보드 소수점 정밀도 설정

(2) 색상 변경하는 방법

  • 측정항목 왼쪽에서부터 측정항목 1번에 해당하며 측정항목 1번 > 히트맵 설정 > 원하는 색상을 적용하면 테이블 내에서 색상이 지정된다.
루커 스튜디오 대시보드 색상 변경

(3) 데이터 누락 서식 지정하는 방법

  • 데이터가 없을 경우 0, - , 공백, null 등 어떻게 누락을 표현할 것인지에 대해 설정할 수 있다.
루커 스튜디오 대시보드 데이터 누락 서식 지정

📊 완성 예시 대시보드 (링크 클릭🔽)

💡 대시보드 참고사항
  • 데이터는 목업 데이터와 GA4 데모 계정 데이터를 사용하였습니다.
  • 목업 데이터는 카페24, 스마트 스토어 데이터로 KRW를 사용하고 GA4 데모 계정은 미국 통화 USD를 사용하고 있으므로 통화가 불일치합니다.
  • GA4 데모 계정의 데이터 용량의 문제로 24년 3월 혹은 4월의 데이터만 활용하여 대시보드를 구현하였습니다. 날짜 필터는 유효하지 않습니다.

5. 결론

지금까지 루커 대시보드를 구현하는 방법에 대해 데이터 연결부터, 시각화 구성, 루커 대시보드 구현하는 방법까지 설명하였는데 루커 대시보드를 직접 구현해 보는 데 도움이 되었으면 좋겠다. 예시 대시보드를 참고하여 우리 서비스만의 대시보드를 만드는 것도 좋은 연습이 될 것 같다. 실제 우리 데이터를 연결해 보고 다양한 시각화를 시도해 보며 경험을 쌓는 데 좋은 시작이 될 것이라고 믿는다.

참고문헌

*궁금한 점이나 추가적인 도움이 필요하다면 언제든지 문의해 주세요! 여러분의 데이터 시각화 여정에 도움이 되기를 바랍니다. 감사합니다😊

MARTECH_image_thumbnail
FULL FUNNEL

SEO 분석 대시보드 템플릿

July 2, 2024

📊 SEO 분석 대시보드 템플릿

블로그나 서비스를 운영하다 보면 내 게시물이나 제품이 자연스럽게 Google 또는 Naver 검색 결과에 노출되길 기대하게 됩니다.

이러한 관점에서 접근하는 방법이 Search Engine Optimization(SEO)입니다.

Google과 Naver 모두 자체 검색 엔진에서 노출되는 다양한 방법과 데이터를 제공합니다. 이는 각각 Google Search Console과 Naver Webmaster Tools입니다.

그 중 Google에서 제공하는 Google Search Console은 키워드 노출, 클릭 수, 순위 등 유용한 정보를 제공하지만, 여전히 복잡한 정보를 얻기에는 어려움이 있습니다.

저 또한 블로그를 운영하면서 Google Search Console을 자주 방문하고 관찰하지만, 이러한 점이 아쉬워 복잡한 데이터를 확인할 수 있는 대시보드를 만들었습니다.

1️. 좌측 하단의 구글서치콘솔 변경 시 내 데이터를 확인할 수 있습니다.

2️. 노출도에 따른 키워드 그룹을 두어서 그룹간 관리가 용이합니다.

3️. 새롭게 등장하는 키워드를 파악할 수 있습니다.

4️. 기간, 기기, 국가에 따라 다양한 지표 변화를 빠르게 확인할 수 있습니다.

Image 1 Image 2

Image 1 Image 2

👉 혹시 더 보면 좋을 지표와 내용들이 있을까요?

👉 대시보드 링크

https://lnkd.in/gdKp8hi7

원본 포스팅 링크

📊 SEO 분석 대시보드 템플릿

MARTECH_image_thumbnail
FULL FUNNEL

GA4 마스터 대시보드 | 루커스튜디오 템플릿

July 1, 2024

루커스튜디오 GA4 마스터 대시보드 템플릿 메인 이미지
GA4 마스터 대시보드 | 루커스튜디오 템플릿

GA4는 유저가 수행한 행동 기반의 분석을 할 수 있게 도와주는 솔루션입니다. 기존의 세션 기반으로 획득관점의 유저분석을 목표로 했던 UA의 단점을 보완하는 업데이트였습니다. 다만, 기본적으로 제공하는 대시보드가 UA 대비 친절하지 않다보니 GA4로 넘어가는 많은 마케터분들과 분석가분들이 어려워하는 경우가 많았습니다.

이러한 단점을 보완하기위해 GA4의 데이터 + UA의 UI를 합친 루커스튜디오 대시보드를 만들었습니다.

루커스튜디오 GA4 마스터 대시보드 템플릿
GA4 마스터 대시보드 템플릿

'2024년 7월 1일부터 Universal Analytics(UA)를 더 이상 사용할 수 없습니다.'

1️. Google Analytics(UA)의 만남

퍼포먼스 마케팅을 처음 시작했을 때, Google Analytics(GA)는 제가 처음 접한 주요 도구 중 하나였습니다. 처음에는 기능이 많아 어색하고 어려웠지만, UA는 곧 필수적인 도구가 되었습니다. 잘 구성된 메뉴와 사용자 인터페이스(UI) 덕분에 쉽게 탐색하고 데이터를 분석할 수 있었습니다.

UA는 사용자, 획득, 행동, 전환의 네 가지 주요 영역으로 주제가 나뉘어 있어 분석이 매우 간단했습니다. 이러한 구조 덕분에 메뉴 순서에 따라 데이터를 분석함으로써 비즈니스 현상을 이해하기가 쉬웠습니다.

2️. Google Analytics 4(GA4)로의 전환

GA4는 UA의 획득 관점에 초점을 맞춘 세션 기반 분석에서 행동 기반 분석 방식으로 데이터 구조를 크게 변경하였습니다. 이러한 변화는 UA의 데이터 단점을 보완했습니다. 그러나 GA4의 메뉴가 UA처럼 주제별로 명확하게 구분되어 있지 않다는 점은 다소 아쉬웠습니다.

✅ 해결책

UA의 분석 섹션과 GA4의 이벤트 수준 분석을 결합한 대시보드

두 가지 장점을 결합한 대시보드이러한 문제를 극복하기 위해 UA의 분석 섹션과 GA4의 이벤트 수준 분석을 결합한 대시보드를 만들었습니다. 이 대시보드는 UA의 익숙한 UI를 유지하면서 GA4의 고급 분석 기능을 활용합니다.

대시보드 데모 보기

원본 포스팅 링크

📊 GA4 마스터 대시보드 | 루커스튜디오 템플릿

MARTECH_image_thumbnail
GROWTH

구글애널리틱스(GA4)와 앰플리튜드의 차이

July 1, 2024

구글 애널리틱스 vs 앰플리튜드 비교 요약

구글 애널리틱스와 앰플리튜드의 기능, 추적 방식, 분석 항목, 의의와 장단점, 담당자를 비교하자면 하단과 같습니다.  해당 내용의 이해를 위해 차근히 퍼포먼스마케터, 그로스마케터의 직무 요건에서부터 왜 애널리틱스가 중요한지(GA든 Amplitude든) 알아보도록 하겠습니다.

구글 애널리틱스와 앰플리튜드

Google Analytics(구글애널리틱스) vs Amplitude(앰플리튜드)
구글 애널리틱스와 앰플리튜드의 비교 표 이미지


마케터가 하는 일

마케터로 생각하는 직무는 주로 퍼포먼스 마케터일 것입니다. 퍼포먼스마케터, 소위 퍼포마는 브랜드나 대행사(에이전시)에서 마케팅 전략을 수립하고 미디어믹스를 짜고 (매체 별/광고 상품 별로 얼마나 쓸 건지를 짜는 것) 이후 해당 미디어믹스에 따라 광고를 집행한 후에 광고 성과를 관리합니다.

그렇다면 퍼포마의 채용 공고를 분석해 보겠습니다. 퍼포먼스 마케터의 직무 요건 및 우대 사항에는 Google Analytics와 Amplitude가 꽤 자주 등장합니다. 심지어 데이터 분석가 직무에도 있네요. 왜일까요?

  • 발란: 퍼포먼스 마케터 (DA, 5년 이상)
  • 아이디어스: 퍼포먼스 마케터 인턴 (체험형 6개월)
  • 사람인: 데이터 애널리스트 (사업기획팀)

� 마케팅을 잘하기 위해서는 성과 측정도 잘해야 하기 때문입니다.

발란의 퍼포먼스마케터 직무
발란의 퍼포먼스마케터 직무

백패커의 마케팅 인턴 채용 공고
백패커의 마케팅 인턴 채용 공고

사람인의 데이터 분석가(Data Analyst) 채용 공고
사람인의 데이터 분석가(Data Analyst) 채용 공고


어트리뷰션 Attribution? 애널리틱스 Analytics?

한 건의 전환이 일어나기까지, 한 명의 사용자에게 노출되는 광고는 수도 없이 많습니다. 마케팅을 열심히 할수록 그렇습니다. 사용자가 1) 인스타그램 광고도  볼 거고, 2) 유튜브 콘텐츠를 봤을 수도 있고, 3) 카카오 배너 광고를 봤을 수도 있고, 4) 네이버 검색 광고를 봤을 수도 있습니다. 이렇게 수많은 광고 매체를 거쳐, 한 건의 전환이 일어났을 때 가장 중요한 질문은 무엇일까요?

고객 전환까지의 채널 여정
그래서 누가(=어떤 광고 매체가) 잘했는데? 결정적 기여가 누구 건데?

다수의 광고 매체들은 다 자기가 기여를 했다고 말합니다. 그래서 광고 관리자로만 광고 성과를 보면 과도하게 성과가 집계될 수밖에 없고, 중복 집계될 수밖에 없는 것입니다.

일주일 안에 저 광고 매체들에 다 노출되었던 사용자가 전환을 했다고 가정해 볼까요? 그렇다면  기여 기간은 7일인 것이고 (광고 매체의 성과를 인정해 주는 기간) 노출된 매체는 4개, 그중 유상(Paid) 광고 매체 3개입니다. (유튜브 콘텐츠는 자사의 브랜딩이었다고 하면요.)

그럼 그중 누가 이 전환의 성과를 가져갈까요?

� 기여 모델에 따라 다릅니다!

  • First touch Attribution: 첫 번째 접점을 만들어 낸 광고 매체에게 기여/성과를 인정하는 것
  • Last touch Attribution: 마지막 접점을 만들어 낸 광고 매체에게 기여/성과를 인정하는 것
    *First와 Last는 한 개 매체만 인정해 주기 때문에 Single-touch라고도 합니다.
  • Multi touch Attribution: 접점을 만들어 낸 여러 매체들에게 가중치를 주어 기여/성과를 인정하는 것

Single-touch attribution models

이렇게 광고 성과의 기여값을 보다 정확하게 측정하기 위해서 Attribution Tool(어트리뷰션툴), Analytics(애널리틱스)가 존재합니다. Web Analytics로 가장 유명한 것이 구글 애널리틱스인 것이고요.

글의 초반 앰플리튜드 vs 구글애널리틱스 비교표에서 언급했었죠. 구글 애널리틱스는 이처럼 광고 매체들의 전환값의 기여도를 측정하여 마케팅을 효율화하는 것을 목적으로 많이 활용합니다.

광고 성과에 '기여'한 정도를 '분석'하기에 Attribution과 Analytics가 쓰입니다.


'전환'이 어디서 일어나는데?

여기서 또 하나 짚어야 할 것이 있습니다. 그 광고, 클릭하면 어디로 가나요? 클릭해서 이동한 페이지에서 보통 전환이 일어날 테니까요.

광고 클릭하면 당연히 웹페이지로... 아니지 요즘은 앱스토어로...
아니지 요즘은 앱 안의 페이지가 열리던데?

  • 웹(Web) 랜딩(*Landing = 착륙, 이동)            
    우리에게 가장 친숙한 웹페이지로 랜딩 되는 것이 일반적입니다.
  • 앱(App) 랜딩
    최근에는 앱 설치를 유도하며 앱스토어 페이지로 랜딩 되거나 앱이 설치되어 있다면 앱 내의 특정 페이지로 랜딩 되기도 합니다.
  • 웹투앱 (Web to App) 
    혹은 웹으로 먼저 랜딩 시킨 후에 여러 혜택을 소구하여 앱을 설치하게끔 하기도 합니다.


웹에서 앱으로, Web to App에서 사라지는 데이터

마케팅 캠페인이 '웹'에 치중되어 있을 때는 구글애널리틱스의 시대였습니다. 그렇지만 '앱'이 뜨기 시작하고 앱마케팅이 활성화되면서 구글애널리틱스 또한 한계에 부딪힙니다.

� 웹 랜딩 후 앱 설치를 한 유저 데이터에 광고 매체의 소스값이 적혀있던 utm이 유실되기 때문입니다

구글애널리틱스, 앰플리튜드, 미디어의 Attribution 비교 1

웹으로 랜딩 된 후 구매라는 전환 행동이 일어날 때 구글 애널리틱스는 Last touch 기여 설정에 의해서, 해당 전환의 성과는 '페이스북'에게 있다고 측정했습니다.

구글애널리틱스, 앰플리튜드, 미디어의 Attribution 비교 2

그런데 웹 랜딩 이후 앱 설치가 진행되고 앱에서 구매가 일어나면 어떻게 될까요? 사용자의 흔적을 파악할 수 있던 utm (광고 매체의 소스값)이 유실되며 광고 매체의 성과를 잡지 못하고, organic (자연 유입)으로 측정하게 됩니다.

cf. 여기서 utm의 광고 매체 소스값이란...?

구글에 나이키를 검색하면 '스폰서' 광고로 나이키가 뜹니다. 이걸 클릭하면 url이 이렇게 나옵니다.

https://www.nike.com/kr?utm_source=Google&utm_medium=PS&utm_campaign=365DIGITAL_Google_SA_Keyword_Main_PC&cp=72646825390....  > utm_source=Google이라고 알려줍니다. (소스값) utm_medium=PS라고 알려줍니다. (매체) 이 두 개의 조합을 광고 매체의 소스값이라고 합니다.

구글 나이키 검색 결과 페이지 - utm 소스


그래서 쓰는 MMP와 PA

그래서 앱 마케팅이 중요해질수록 MMP와 PA의 인지도 또한 높아질 수밖에 없습니다. MMP는 Mobile Measurement Partners로 앱스토어에 SDK를 붙여 앱 설치 성과를 측정해 주는 솔루션을 말하고, PA(Product Analytics)는 이러한 MMP들을 연동하여 앱 설치 성과를 분석할 수 있도록 도와줍니다.

MMP와 PA 역할 및 솔루션

GA는 Web 위주의 유입 성과 분석툴,
Amplitude는 App 위주의 사용자 행동 분석툴

서비스가 Web 위주인 경우 구글애널리틱스만 사용해도 충분합니다. 다만 App 위주인 경우 App 설치 성과를 분석하는 MMP (Appsflyer, Adjust, Airbridge 등)와 Web to App을 추적하고, App 내 사용자 행동을 분석하는 PA(Amplitude, Mixpanel 등)가 필요합니다!

유저의 웹 to 앱 여정과 마테크 솔루션

풀스택 마케팅 컨설팅펌 마티니아이오

https://martinee.io/

원본 포스팅 링크

구글애널리틱스(GA4)와 앰플리튜드의 차이

MARTECH_image_thumbnail
GROWTH

앰플리튜드(Amplitude) Segment Chart

June 28, 2024

프로덕트 분석/성과 분석 툴

그로스마케팅의 기본은 분석입니다. 분석 툴, 주로 Analytics라고 많이 이야기하죠. Google Analytics가 대표적이고요. 이외 Product Analytics라고 했을 때 Mixpanel(믹스패널), Amplitude(앰플리튜드) 등의 솔루션이 있습니다.

Google Analytics(구글애널리틱스), Mixpanel(믹스패널), Amplitude(앰플리튜드) 로고


프로덕트 분석이 뭔가요?

프로덕트 분석은 사용자들이 디지털 프로덕트를 쓰는 방식을 이해해보는 것입니다. 사용자의 행동 데이터를 분석하고, 전환 기회를 파악하고, 사용자의 평생 가치(LTV: Long Time Value)를 높이는 경험을 만들어 사용자를 비즈니스의 핵심으로 만듭니다.

프로덕트 분석을 통해 사용자의 실시간 참여 및 행동 데이터를 추적, 시각화, 분석하여 전체 고객 여정(User Journey)을 최적화할 수 있습니다. 사용자의 라이프사이클 모든 단계를 데이터로 확인하여 디지털 경험을 개선하고, 충성도를 확보하고, 비즈니스 성과로 연결하도록 지원합니다.

전체 고객 여정(User Journey) 예시

(사용자 여정 예시) 광고를 클릭하고 ~ 계정을 생성하고(Onboarding Process라고 함) ~ 가입하고 ~ 기능 A를 경험하고 ~ 모바일로 로그인하고 ~ 첫구매를 하고 ~ 기능 B를 경험하고 ~ 기능 C를 경험하고 ~ 앱푸시를 받고 ~ 구독할 것 같은데 ~ A/B 테스트를 경험하고 ~ 파워 유저가 되고 ~ 남에게 추천하고...

위와 같은 사용자 여정 중에서 하기 질문에 앰플리튜드를 통해서 답할 수 있습니다.

  • Why do users convert or dropoff? (사용자가 전환하거나 이탈하는 이유는 무엇일까요?)

  • Which featurees predict likelihood to buy? 구매 가능성을 예측하는 기능은 무엇인가요?
    *커머스라면 대개 상품/브랜드 찜하기, 장바구니에 상품 담기가 그 기능입니다.

  • What is the cross-device user journey? 크로스 디바이스 유저의 여정은 무엇인가요?
    보통 Web to App으로 Mobile/Web에서 프로덕트를 경험하다가 App을 설치하고 App으로 넘어갑니다.
    *대개 여기서 데이터가 유실됩니다.

  • How did our launch impact monetization? 출시가 수익 창출에 어떤 영향을 미쳤나요?

  • Who are our highest value customers? 우리의 최고 가치 고객은 누구입니까?
    *가치가 가장 높은 고객군의 특성을 알아야, 그 고객군과 유사한 고객들을 더 데려올 수 있고 혹은 기존 고객들이 그 고객과 유사한 행동을 하게끔 유도해야합니다.

  • How likely is churn within user cohorts?사용자 집단 내에서 이탈할 가능성은 얼마나 되나요?
    *이탈 지점과 시점을 알고 있어야 이를 방지하거나 개선할 수 있습니다.


커머스의 필수 지표: 매출, 주문수, 건단가, 객단가

프로덕트 분석이라고 하면 거창해 보이지만 실전은 생각보다 단순합니다. 커머스에서 가장 중요한 지표가 무엇일까요? 바로 매출/주문수/객단가/건단가입니다.

매출=주문수X건단가, 매출=주문자수X객단가 개념으로, 결국 '매출'이 가장 중요한데요.

동일한 매출을 기준으로 주문수가 많아지면 건단가가 낮아지고, 건단가가 높아지면 주문수가 적어집니다. 아주 당연한 얘기지만, 이 내용이 무엇과 연관이 있을까요? 바로 물류비입니다.

건단가가 낮아서 주문수가 많아지면 택배 물량이 많아집니다. 물론 합배송이 가능하냐, 물류 체계가 자체 배송이냐 위탁 배송이냐, 물류 센터가 있느냐 등에 따라 상황은 다를 수 있겠지만 대개 커머스는 주문수와 건단가 중 굳이 택한다면, 건단가를 높이고 주문수를 줄이는 것이 좋습니다. (객단가는 유저수와 객단가를 둘 다 올리는 게 좋고요...ㅎㅎ)


앰플리튜드(Amplitude)의 Segment Chart 만들기: 매출, 주문수, 객단가, 건단가

*매출, 주문수, 객단가, 건단가 차트 모두 '주문 완료'/'구매 완료'/'결제 완료' 와 같은 이벤트와 '주문 금액'/'구매 금액'/'결제 금액'을 뜻하는 이벤트 프로퍼티가 필수입니다.

*여기서 이벤트와 프로퍼티는 모두 개별적으로 설정되는 것으로 통용되는 단어가 아님을 참조해주세요.

1️. 매출 차트 그리기

1. Segmentation by 에서 주문 완료 이벤트를 설정해줍니다.

해당 택소노미에서는 total_items_order_completed 가 주문 완료/결제 완료 이벤트입니다.

그리고 by order_total 이라는 이벤트 프로퍼티를 사용하여 값을 표현해줍니다.

2. ...performed by Any Users는 따로 설정하지 않아도 됩니다. (전체 유저의 매출을 보는 것이고, 특정 유저의 행동을 보고자 하는 것이 아니니까요.)

3. ...measured as 에서 'Properties'를 선택하고 Sum of Property Value를 설정합니다.

4. 일자까지 설정해주면 그래프가 구현됩니다!

5. 그래프 하단에는 데이터 테이블이 표 형식으로도 나오고, 이는 CSV로 다운로드 받을 수 있습니다.

앰플리튜드로 구현한 매출 차트
앰플리튜드로 구현한 매출 차트

매출은 'order_total'이라는 이벤트 프로퍼티의 값(value)를 더한 것이기에
… measured as Sum of Property Value로 설정합니다.

2️. 주문수 차트 그리기

주문수는 쉽습니다! ...measured as Sum of Property Value를 Event Property로 바꿔주면 됩니다.

매출이 구매 이벤트의 금액의 총합이었다면, 주문수는 이벤트가 발생한 수이기 때문입니다.

앰플리튜드에서 구현한 주문수 차트 (+grouped by order_total)
앰플리튜드에서 구현한 주문수 차트 (+grouped by order_total)

Event Totals로 바꿨는데 그래프가 조금 이상하죠? order_total이라는 주문금액값이 grouped by 필터로 걸려있어서 그렇습니다. 금액값 별로 어떻게 구성되어져있는지 보여주는 거죠. 해당 필터를 지워주면 됩니다.

앰플리튜드로 구현한 주문수 그래프
앰플리튜드로 구현한 주문수 그래프

3️. 객단가 차트 그리기

객단가는 매출/주문자수입니다. 그러므로 매출=주문완료 이벤트(+order_total 프로퍼티)의 PROPSUM (PropertySUM)/주문완료 이벤트의 유니크(사용자수)로 수식을 만들어서 적용하면 됩니다. 즉 객단가는 PROPSUM/UNIQUES입니다.

객단가의 추이를 과거와 비교할 수도 있습니다. Comparing to date range ending _ 여기서 일자를 설정하여 두 개의 그래프로 구현되도록 할 수 있습니다. 과거 일자와 비교하면 그 시점의 유저가 **[Previous]**로 표시되고, 이후 시점의 유저가 All User로 표시됩니다.

앰플리튜드 객단가 차트 그리기

4️. 건단가 차트 그리기

건단가는 매출/주문수입니다. 그러므로 주문완료 이벤트의 속성값, 주문액 평균을 확인하면 됩니다. ...measured as Average of Property Value로 설정해줍니다.

앰플리튜드 건단가 차트 그리기

건단가는 주로 프로모션을 진행할 때 부차적으로 확인합니다. 평상시 대비 프로모션 진행 시에 카테고리/브랜드/상품/장바구니 할인 쿠폰이 발급되어 건단가가 낮아지는 경우가 많기 때문입니다.

건단가/객단가는 대개 유사합니다. 다만 예외도 존재합니다. 리셀러가 커머스에 많은 경우, 상품을 대량하는 구매하므로 경우 주문수가 주문자수보다 월등히 많아 건단가는 낮고, 객단가는 높을 수 있습니다.

건단가/객단가는 시즈널리티를 탑니다. 특히 의류 커머스의 경우 S/S에는 반팔 티셔츠가 주가 되기에 객단/건단이 낮아지고, F/W에는 아우터 상품이 메인이 되면서 객단/건단이 높아집니다.


앰플리튜드 대시보드 예시

대시보드 한 판에 차트들을 모을 수 있습니다. 매출도, 구매전환율도, 상품수도 여러 필터로 쪼개보면서 프로덕트의 현황을 확인할 수 있습니다.

앰플리튜드 대시보드 예시


분석 내용 공유하기

앰플리튜드 차트로 확인한 데이터들은 구글 스프레드시트로 이전 성과들과 비교하거나, 노션으로 정리하거나, 간단하게는 슬랙으로 정리하여 공유합니다.

분석 내용 공유 예시

참 쉽죠...?

그로스마케터가프로모션/쿠폰 분석을 하는 과정 중에 앰플리튜드로 세그먼트 차트 (커머스에 꼭 필요한 매출, 주문수, 건단가, 객단가) 그리는 법을 알아보았습니다! 감사합니다.

풀스택 마케팅 컨설팅펌 마티니아이오

https://martinee.io/

원본 포스팅 링크

앰플리튜드(Amplitude) Segment Chart

MARTECH_image_thumbnail
FULL FUNNEL

링크드인 통계 분석 대시보드 만들기

June 24, 2024

📊 링크드인 통계 분석 대시보드 만들기

데이터를 다루다보니 링크드인 컨텐츠도 데이터로 관리하고 싶은 마음이 컸습니다.

링크드인에서 가장 많이 들어가는 항목이 통계 부분인데 들어갈때마다 아쉬운건 제공 되는 데이터가 너무 제한적이라는 것이었습니다.

링크드인이 제공해주지 않아서 직접만들어 봤습니다.

1️. 평균/누적 컨텐츠 노출, 참여도(좋아요, 댓글), 팔로워에 대해서 알 수 있습니다.

링크드인 통계 분석 대시보드 1

2️. 노출, 참여도, 팔로워에 긍정적인 컨텐츠 종류를 확인할 수 있습니다.

링크드인 통계 분석 대시보드 2

3️. 컨텐츠 개별 누적 지표와 계정 지표를 분리해서 볼 수 있습니다.

링크드인 통계 분석 대시보드 3

링크드인이 제공하는 API가 페이지 데이터다 보니 개인용 컨텐츠에 대한 통계를 자동화 하지 못한 게 아쉽긴 하지만 주기적으로 데이터를 다운받아서 스프레드시트에 올리기만 하면 자동으로 시각화에 업데이트가 되게 했습니다.

<추가할 것들>

+ Social Selling Index (SSI)와 같은 지표를 추가하면 좋을 것 같아 점진적으로 추가할 계획입니다.

+ 각 콘텐츠 유형에 대한 레이블을 추가하여 분석을 다양화하려고 합니다.

+ 링크에서 썸네일 이미지 자동으로 가져올 수 있게 하는 방법 없을까요?! 고민중입니다.

👉 혹시나 더 보면 좋을 지표와 내용들이 있을까요?

👉 대시보드 링크 : https://lnkd.in/gRGdQE2i

원본 포스팅 링크

📊 링크드인 통계 분석 대시보드 만들기

MARTECH_image_thumbnail
GROWTH

그로스마케팅 앰플리튜드(Amplitude) 부트캠프

June 24, 2024

그로스마케팅이란?

그로스마케팅은 그로스해킹(Growth Hacking) 기법을 기반으로 Growth, 성장을 위해 마케팅하는 것입니다.

성장을 위해 가장 필요한 정보는 무엇일까요? 사용자에 관한 것입니다. 누가 어떻게 사용했는지 알아야, 그 사람과 유사한 사람들을 더 불러올 것이고 (=유입) 어떻게 사용했는지 알아야 어디서 이탈했는지를 찾아 그 지점을 개선시킬 수 있을테니까요.

즉 그로스해킹과 그로스마케팅의 근간은 사용자와 데이터입니다.

사용자 행동을 데이터로 남기고, 이를 분석하여 서비스 개선의 근거로 삼는 것이죠. 사용자의 행동을 이벤트(Event) 혹은 로그데이터 (Log data)라고 이야기하는데요. 이 로그데이터를 분석할 수 있는 툴/솔루션 중 하나가 앰플리튜드(Amplitude)입니다.

앰플리튜드 누가 쓰냐구요? 오늘의집도, 올리브영도, 무신사도 씁니다.

오늘의집에서 확인할 수 있는 앰플리튜드 이벤트(Event)
오늘의집에서 확인할 수 있는 앰플리튜드 이벤트(Event)

오늘의집에 모바일 버전으로 유입되어 제가 한 행동들 (프로모션 Viewed > 콘텐츠 Viewed > 프로모션 Viewed )이 수집되는 것을 확인할 수 있습니다.

이렇게 PC/Web이든 Mobile/Web이든 App이든, 어떤 플랫폼에서든 사용자가 한 행동을 수집하여 분석할 수 있습니다. 사용자 행동 분석은 그로스해킹, 그로스마케팅의 기본이니까요.

그로스마케팅 툴, 앰플리튜드(Amplitude)를 배우고자

그로스마케터, 개발자, 서비스기획자, 퍼포먼스마케터, CRM마케터 등 다양한 직무의 실무자들이 모입니다.

앰플리튜드를 더 잘 사용하기 위해 마티니에서 개최한 앰플리튜드 부트캠프 1기에는 김과외, 당근마켓, 사람인, 잡코리아, 현대홈쇼핑, 비소나이, 타이어픽, CJ올리브영 등의 재직자 분들이 오셨었습니다. 마케터를 지망하는 취준생도, 이제 막 취업한 신입도 아닌 유니콘 스타트업의 연차가 있는 실무자들이 앰플리튜드를 배우기 위해서 모입니다.

 앰플리튜드 부트캠프 1기 현장 모습
 앰플리튜드 부트캠프 1기 설문 응답 시트

사용자를 이해하고 분석하여 그로스(Growth)를 도모합니다.

앰플리튜드(Amplitude)를 학습하고, 도입하고, 활용하고자 하는 이유는 대다수 유저 분석을 위함입니다. 그렇다면 유저 분석은 어떻게 할 수 있는 것일까요?

 앰플리튜드 부트캠프 1기 세션 모습
 앰플리튜드 부트캠프 1기 응답 시트 내 유저 분석 검색 결과
유저 분석의 필요성을 모두가 알고 있습니다.


이벤트(Event)와 프로퍼티(Property)를 수집하여 현황을 분석합니다.

(1) 사용자의 행동(Event)만 수집하면 구매수가 늘어난 현상에 대해 발견할 수 있습니다. '구매'를 Event로 수집했을 때입니다.

이벤트 예시

(2) 사용자의 행동(Event)에 행동과 관련된 추가 속성값(Property)를 수집하면

좀 더 자세한 정황을 파악할 수 있습니다. '구매'라는 Event에 Event Property로 Brand_name이 추가로 수집되었을 때입니다. 구매수가 실제 증가한 브랜드는 'Nike'이고 'Vans'는 감소했다는 것을 알 수 있습니다. Nike의 반응도가 높으니 재고를 미리 확인해두면 좋겠죠? 현상을 분석하여 이후 상황에 적절한 대응을 취할 수 있습니다.

이벤트 및 프로퍼티 예시

(3) 사용자의 행동(Event)에 행동과 관련된 추가 속성값(Property) 그리고 사용자와 관련된 속성값(User Property)를 수집하면 가장 자세하게 현황을 분석할 수 있습니다.

이벤트 및 프로퍼티 예시 2

17일에서 18일의 구매수 증가에 기여한 구매 내역은 meta로 유입된 신규 유저의 Nike 구매입니다. (30건에서 70건으로, 200%이상 증가) organic으로 유입된 기존 유저의 Nike 구매는 이틀 간 동일했고, organic으로 유입된 기존 유저의 Vans 구매는 60건에서 40건으로 감소했네요.

즉 Nike의 구매수가 늘었다라는 분석이, meta 광고에 의해 유입된 신규 유저들의 Nike의 구매수가 늘었다. 라고 훨씬 자세해졌습니다.

구매수 100 > 120, 20%의 증가가 있었다라는 표면적인 확인에서 Nike 브랜드 증가가 일어났다는 조금 더 깊이있는 확인으로 어떤 경로에 의해 어떤 특성을 가진 유저에 의한 구매수 증가였는지까지 분석이 가능해진 것이죠.

분석이 깊이있을수록 전략과 실행방안도 구체성을 가집니다. 메타 광고에 의해 유입된 신규 유저들의 증가세가 확인되었으니, 해당 광고 매체를 활성화시키는 것이 좋겠죠. 어떤 광고 소재가 좋은 효율을 가져왔는지 분석하고 그 소재를 베리에이션하여 (다양한 버젼으로 만들어보는 것) 예산을 증액하여 광고를 운영해자는 실행 방안이 나오기 쉬워집니다.


서비스 내 주요 이벤트(유입, 조회, 가입, 구매 등) 분석하고 마케팅하기

이벤트와 이벤트 프로퍼티, 유저 프로퍼티 등의 설계가 완료되면 (이를 총칭하여 택소노미, taxonomy를 설계한다고 합니다.) 차트를 구성하여 주요 지표들의 수치를 확인할 수 있습니다.

회원가입수_연령별

가입완료(Event:sign_up_completed)수를 나이(User Property:user_age)로 나눠볼 수도 있고요.

(예시) 데이터 분석을 기반한 퍼포먼스마케팅

가입 관련 데이터 분석을 했을 때, 서비스 내의 유입 대비 가입 전환율이 30대가 가장 높다면 퍼포먼스마케팅 광고의 타겟 대상을 30대로 집중해준다면 동일 비용 대비 좀 더 광고 효율이 높아지겠죠?

연령별 회원가입 수

회원가입수_연령별 주문수_신규/기존유저

주문완료(Event:order_completed)수를 유저 상태(User Status: New or not)로 나눠볼 수도 있습니다.

신규와 기존 주문데이터 영역차트

(예시) 데이터 분석을 기반한 CRM마케팅

주문수의 유저 비중을 확인했을 때 절대적으로 기존 유저의 비중이 높기 때문에 두 가지 방안을 생각할 수 있겠는데요.

(1) 비중이 낮은 신규 유저의 구매 활성화를 위해서 신규 유저 타겟으로 추가 쿠폰을 발급하는 프로모션을 운영하고 이를 홍보하는 CRM 마케팅을 진행할 수 있겠습니다.

29CM 데이터 분석을 기반한 CRM마케팅 예시

혹은 (2) 비중이 높은 기존 유저의 구매수를 더 장려하기 위해서 기존 유저들이 선호하는 브랜드의 신상품 런칭 소식을 알려주는 CRM 마케팅을 진행할 수도 있겠고요.

도미노피자 카카오톡 알림톡 CRM 마케팅 예시

앰플리튜드가 그로스마케팅의 정답일 수는 없습니다.

그로스해킹과 그로스마케팅에 쓰여지는 수많은 마테크 솔루션 중 하나일 뿐입니다. 앰플리튜드(Amplitude)는 프로덕트 애널리틱스로 (행동 분석 솔루션) 유용한 것인지, 만능인 것은 아닙니다. 솔루션의 사용이 성장을 보장해주지는 않습니다. 그러나 사용자를 더 잘 이해하는 것은 서비스의 개선 그리고 성장과 직결될 것입니다.

마테크 솔루션 분류 이미지
 앰플리튜드 부트캠프 1기 표지

앰플리튜드 부트캠프는 현재 2회차까지 진행되었으며 (1회차 격주 2시간씩 2회 운영) 다음 일자는 24년 1월 정도로 예정되어 있습니다. 마티니의 링크드인이나 인스타그램을 통해 소식을 공유받으실 수 있습니다.

링크드인 https://www.linkedin.com/feed/update/urn:li:activity:7103207584077139968

인스타그램 https://www.instagram.com/martinee_official/

홈페이지 https://martinee.io/

풀스택 마케팅 컨설팅펌 마티니아이오

https://martinee.io/

원본 포스팅 링크

그로스마케팅 앰플리튜드(Amplitude) 부트캠프

MARTECH_image_thumbnail
FULL FUNNEL

Figma가 고객을 찾는데 걸린 시간 = 5년

June 20, 2024

🧩 Figma가 고객을 찾는데 걸린 시간 = 5년

최근 새롭게 시작하는 IT 기반의 기업들 혹은 일반 제품들도 PMF 찾는 것을 중요 단계로 생각합니다.

IT 기반 기업들의 PMF 검증 소요시간 비교표

PMF

PMF는 제품 - 시장 적합성으로 제품이 시장에서 매력적인 상품인지 찾는 단계를 의미합니다. 매력이라는 모호한 단어만큼 PMF는 명확한 순간을 정의하는 것은 쉽지는 않습니다. 많은 경우 유저들과 인터뷰를 통해서 단계의 달성을 가늠합니다. 충분한 PMF를 찾았다면 그 때부터 비즈니스 스케일업을 본격적으로 하게됩니다. 이렇게 하면 제품 개발과 제작에 들이는 리소스를 줄여서 제품 출시에 따른 위험성을 최소화할 수 있다는 장점을 가지고 있어 특히나 스타트업에서 각광받는 방식입니다.

우리가 흔히 아는 Canva, Notion, Figma 의 기업들의 인터뷰로 PMF 달성 소요기간을 확인해보니 대부분 1년~2년 이상의 시간이 걸렸다는 것을 알 수 있었습니다.

평소 PMF는 빠르게 시장을 찾는게 중요하다라고 생각했는데 유수의 기업들도 PMF를 찾는데 오랜기간이 걸렸다는게 너무나 놀라웠습니다. PMF의 기준이 높았을 수도 있고 기술 기반의 기업이다보니 더 많은 시간이 주어졌을 수 도 있습니다. 그럼에도 불구하고 좋은 제품으로 성장하기 위해서는 분명히 고객이 제품을 사랑하게 만들고, 지속적으로 제품을 사용하도록 유도하는데 충분한 시간과 고민이 필요하다는 것을 다시 생각하게 되었습니다.

얼마전부터 집으로 가는 길에 작은 건물이 지어 지고 있었습니다. 처음엔 공사를 하는 것 같은데도 한참동안이나 건물은 올라갈 기미가 보이지 않았습니다. 아마도 지반공사와 기초 공사만 이루어졌던것 같습니다. 그리고 기초공사가 마무리되니 체감은 하루에 한 층 씩 빠르게 집이 올라가면서 공사가 마무리 되었습니다. 건물을 만들때 가장 많은 시간을 투자하는 것은 외형적 모습이아닌 기초 공사 기간입니다.

제품의 기초공사가 PMF를 찾는 과정이라면 PMF를 찾는데 충분한 시간과 고민이 필요하지 않을까요? 그리고 그 시간이 결국 안정적 비즈니스를 찾는데 중요한 기준이 되지 않을까요?

빠르게 문제를 찾는 것과 견고한 기초를 만드는 것, 정답이 있기보다 상황에 따라 선택을 하는 문제라고 생각합니다. 다만, '빠름' 이라는게 언제나 정답처럼 생각한 저에게 좀 더 새로운 시각을 준 것 같습니다.

👉 여러분 서비스의 PMF는 어떤가요?

원본 포스팅 링크

🧩 Figma가 고객을 찾는데 걸린 시간 = 5년

MARTECH_image_thumbnail
GROWTH

앰플리튜드(Amplitude), 왜 쓰는 걸까?

June 17, 2024

왜 유니콘 스타트업에서는 앰플리튜드를 쓰는 그로스마케터를 구할까?

앰플리튜드란?

웹/앱 서비스 내에서 사용자들의 행동을 분석할 수 있는 프로덕트 애널리틱스(Product Analytics), 서비스 분석 툴입니다.

앰플리튜드(Amplitude) 웹사이트 메인 페이지

마테크 솔루션 중에 프로덕트 애널리틱스, 그 중에 앰플리튜드

앰플리튜드는 프로덕트 애널리틱스(Product Analytics)입니다. 단어가 영어일 뿐, 직역하면 서비스 분석 솔루션/툴입니다. 온라인 비즈니스, 서비스, 프로덕트, 마케팅 서비스들을 도와주는 기능들을 솔루션(Solution)/툴(Tool)이라고 많이 지칭합니다. 특히, 마케팅 쪽에서는 마테크 솔루션(Mar-tech Solution), 마테크 툴(Mar-tech Tool)이라고도 하죠.

2022 마테크 솔루션 Landscape
마테크 툴은 엄청나게 많다....

주요 마테크 솔루션 소개 이미지
주요 툴들은 또 이렇게 나눌 수 있습니다.

구글 애널리틱스보다 '앱'에 좀 더 특화된 솔루션!

가장 유명한 마테크 솔루션으로는 구글 애널리틱스(Google Analytics)가 있습니다. 무료인 만큼 대중성이 높고 자사몰이 있는 웹 서비스를 하신다면 들어보셨을 것입니다. 이전에는 앱이 약하다는 단점이 있었지만, 최근 GA4는 앱까지 커버합니다.

구글애널리틱스(Google Analytics4) 보고서 화면
구글애널리틱스(Google Analytics4) 보고서 화면

GA4가 앱까지 커버한다 해도 아직 앱 분석의 디테일은 앰플리튜드가 강합니다. 즉 GA는 웹(Web)>앱(App), Amplitude는 앱(App)>웹(Web)의 순으로 장점이 있습니다.

또한 구글애널리틱스는 사용자를 서비스 웹/앱에 들어오게 하는 유입에 초점이 맞춰져있습니다. 사용자 획득이라고 하여, UA(User Acquisition)으로도 이야기하는데요. 모든 서비스의 첫 시작이라고 할 수 있습니다.

유튜브를 구독하기 위해서, 무신사에서 상품을 사기 위해서, 밀리의 서재에서 책을 읽기 위해서는 결국 유튜브, 무신사, 밀리의 서재에 유입되어야 하니까요. 즉 목표가 되는 전환을 위해서는 유입이 필수 요건입니다.

일례로 구글애널리틱스는 사용자의 유입을 만들어내는 채널(Organic, Paid, Refferal)의 데이터를 세부적으로 확인할 수 있습니다. (물론 앰플리튜드로도 확인할 수 있습니다.)

  • 오가닉 채널(Organic)은 자연적인 방식으로, 네이버나 구글에 키워드를 직접 검색해서 들어온 경우
  • 페이드 채널(Paid)는 퍼포먼스마케팅와 연계된 방식으로, 페이스북/인스타그램 광고나 네이버 검색 광고를 클릭해서 들어온 경우
  • 추천(Referral)은 링크를 타고 들어오는 경우 등

앰플리튜드 (Amplitude)와 구글애널리틱스(Google Analytics4) 비교표
앰플리튜드가 왜 필요한가요? 앱 분석을 위해 필요합니다.

앰플리튜드는 유입 이후 웹/앱 서비스 내에서의 사용자 여정(User Journey)을 행동(Event)을 기반으로 세부적으로 확인할 수 있습니다.

  • Q1. 사용자가 우리 서비스에 유입된 이후에 직후에 가장 많이 한 행동은 무엇일까?
  • A1. SALE을 눌러볼까, 상품을 검색해볼까, 가입을 할까, 혜택을 볼까?
  • Q2. A 브랜드에서 구매 완료 행동을 N개월에 걸쳐 X회 이상 한 유저들의 특성은 무엇일까?

앰플리튜드의 퍼널(Funnel) 차트
앰플리튜드의 퍼널(Funnel) 차트

UA 관점 (User Acquisition) 이후로 언급되는 것은 리텐션 (Retention)인데요. 첫 방문, 첫구매로 사용자의 행동이 끝난다면 서비스가 장기적으로 살아남기는 어렵겠죠? 이에 따라 두 번, 세 번 방문하고 또 전환되는 재방문과 재구매가 중요합니다.

앰플리튜드는 전환된 사용자들의 행동을 세부적으로 분석하여, 여러 번 방문/전환한 충성 사용자들을 코호트화 할 수 있습니다.

(*코호트: 동일 특성을 가진 사용자의 집단화) 충성 사용자들의 코호트를 분석하여 특성을 파악하고 다른 사용자들이 충성 사용자가 될 수 있도록 유도할 수 있습니다.

즉, 구글 애널리틱스가 UA에 강점이 있는 솔루션이라면 앰플리튜드는 리텐션에 강점이 있는 솔루션이라고도 이야기할 수 있겠습니다. (물론 GA도 Retention을 볼 수 있고, 앰플리튜드도 UA를 볼 수 있습니다.)

앰플리튜드(Amplitude), 개인에게는 왜 필요한가요?

스타트업 쪽에서 데이터 분석 역량을 요하는 직군에게는 우대 사항 혹은 자격 요건이 됩니다. 오늘 기준 원티드에서 찾아본 채용 공고인데요.

여기어때에서 Growth Marketer(그로스 마케터)를 채용하는 공고에 주요 업무로 데이터 분석과 그로스 전략 수립이, 자격 요건에 마케팅 툴 [MMP(Appsflyer, Adjust), Amplitude, Braze, GA 등]에 대한 내용이 기재된 것을 확인할 수 있습니다.

채널톡의 마케팅 매니저 채용 공고 내에도 우대사항으로 세일즈포스(아마 태블로겠죠?), 앰플리튜드 등 데이터 솔루션을 통한 성과 측정이 언급됩니다.

여기어때 컴퍼니 그로스 마케터 채용공고
채널톡 마케팅 매니저 채용공고

결국 더 좋은 앱을 만들어 (수익을 높이고자) 쓰는 솔루션입니다.

왜 앱 데이터를 분석해야 할까요? 더 좋은 앱을 만들기 위해서겠죠. 앱 데이터는 무엇으로 구성될까요? 사용자들의 정보와 행동에 의해서 앱 데이터가 쌓입니다.

즉 사용자의 행동을 분석할수록 더 나은 프로덕트/서비스를 만들 가능성이 높아집니다.

사용자들이 불편을 느끼는 지점이 사용자들이 이탈하는 지점일테고, 불편을 개선하면 이탈률이 낮아지고 잔존율이 높아지며, 잔존율이 높아지면 전환의 대상이 되는 모수가 많아지기 때문입니다. 즉 더 많은 전환을 유도할 수 있게되어 서비스가 목표하는 KPI - 매출이나 회원수 등 - 을 달성할 수 있게됩니다.

앰플리튜드(Amplitude), 회사에게는 왜 필요한가요?

앰플리튜드를 사용하면

여러 종류의 데이터를 한 번에 보여주는 대시보드의 형태를 쉽게 쓸 수 있게 됩니다.

대시보드는 여러 차트의 구성으로 이루어져있는데요.

예를 들어 UA 대시보드라고 하면, 첫방문수 추이(차트1), 가입수 추이(차트2), 첫구매수 추이(차트3), 첫방문을 광고 매체 별로 쪼갠 것(차트1-1) 등으로 구성될 수 있겠습니다.

대시보드 한 판에 여러 지표 보기

이외 데이터에 대한 접근성을 높여서 회사 구성원들의 데이터 기반 의사 결정 (data-driven) 의사결정을 돕습니다. 데이터를 sql, python으로만 추출하는 경우 이 데이터 스킬셋이 있는 사람들만 데이터를 추출할 수 있는데요. Amplitude는 한 번 도입해두면 차트를 그리는 것이 훨씬 쉬워, 원하는 것을 보기도 쉽습니다.

다양한 구성원 간의 데이터 드리븐 의사결정

마지막으로 데이터의 연동이 빠르다는 것 또한 장점입니다. 어제의 매출 데이터도, 오늘 오전의 유입 데이터도 바로 확인할 수 있습니다.

데이터의 빠른 업데이트

앰플리튜드 누가 쓰나요?

마케터와 서비스기획자(PM/PO), 데이터 분석가(Data Analyst), UIUX 디자이너 등 여러 직군에서 활용할 수 있습니다.

언제, 어디에 쓰나요?

전체 구성원들이 함께 확인할 수 있는 KPI 대시보드

마케터가 사용하는 마케팅 대시보드

서비스기획자(PM)이 사용하는 프로덕트 대시보드

디자이너가 사용하는 디자인 대시보드 등이 있습니다.

앰플리튜드의 마케팅 대시보드 샘플
앰플리튜드의 마케팅 대시보드 샘플
앰플리튜드의 이커머스 KPI 대시보드 샘플
앰플리튜드의 이커머스 KPI 대시보드 샘플
앰플리튜드의 콘텐츠 대시보드 샘플
앰플리튜드의 콘텐츠 대시보드 샘플
앰플리튜드의 프로덕트 대시보드 샘플
앰플리튜드의 프로덕트 대시보드 샘플

앰플리튜드 어떻게 쓰나요?

무료 버전이나 구독 모델을 사용해볼 수 있습니다.

앰플리튜드의 플랜 비교표

https://amplitude.com/pricing

앰플리튜드 정규 도입은 한국 공식 리셀러인 AB180/CJ맥소노미를 통해 진행할 수 있습니다. 이후 기획자들의 택소노미 설계와 개발자들의 구현을 통해 도입이 완료됩니다.

앰플리튜드의 존재가 당연해집니다.

앰플리튜드를 한 번 사용하면 없는 것을 상상하기 어렵습니다. 앰플리튜드의 효능을 체감하는 곳들은 많습니다. 29CM, 무신사, SSG, 올리브영 등 '앱'이 중요한 주요 커머스들은 많이들 사용합니다!

(참조) 29CM의 데이터 그로스팀의 데이터 분석가 분이 쓰신 글

목적 조직에서의 DA가 하는 일

앰플리튜드 본사? 리셀러? 컨설팅펌?

앰플리튜드의 한국 공식 판권은 AB180과 CJMaxonomy(CJ맥소노미)가 가지고 있습니다. 제가 재직 중인 마티니아이오(martinee.io)는 컨설팅펌입니다.

마티니의 그로스팀은 Amplitude를 도입할 때 택소노미 설계를 도와주고 데이터 파이프라인을 구축을 지원하며, 대시보드의 기획과 제작을 돕습니다. 즉 앰플리튜드가 '참고서'라고 했을 때 이를 판매하는 서점은 AB180과 CJ맥소노라면, 마티니는 과외 선생님입니다. 어떤 식으로 과외가 진행되는지, 시연을 원하시는 분들은 연락주세요!

원본 포스팅 링크

앰플리튜드(Amplitude), 왜 쓰는 걸까?

MARTECH_image_thumbnail
FULL FUNNEL

루커스튜디오 신규 릴리스 : 📅 타임라인 차트

June 4, 2024

루커스튜디오 신규 릴리스 : 📅 타임라인 차트

루커스튜디오 신규 릴리스 : 타임라인 차트 예시 이미지

👉 구현방법

프로모션 시작날짜, 종료날짜, 프로모션 이름만 있다면 간단하게 구현가능 합니다.

🙋 활용 방법

커머스 뿐 아니라 프로모션이 빈번한 서비스에서는 다양한 프로모션이 진행되기도 하고 심지어 겹쳐서 진행되기도 합니다.

프로모션은 매출에 직접적인 영향을 주는 중요한 요소이기 때문에 프로모션에 대한 매출 영향도를 잘 분석해서 프로모션 효과를 지속적으로 높여나가야 합니다.

다만, 앞서 말한 것처럼 여러 개가 동시에 진행되는 프로모션의 매출과 영향도를 구별해서 보는 것은 쉽지 않습니다.

아래의 루커스튜디오 차트를 활용하면 프로모션에 대한 타임라인을 간단하게 시각화할 뿐 아니라 각 프로모션 주요 지표도 동시에 확인 가능합니다.

차트 내 필터 클릭 시 발생하는 기능 오류가 있긴 하지만 추후 차트에 대한 완성도가 높아진다면 날짜별 액션에 대한 성과분석이 중요한 프로모션 & CRM 마케터 분들에게 유용한 방식이 될 것 같습니다.

원본 포스팅 링크

루커스튜디오 신규 릴리스 : 📅 타임라인 차트

MARTECH_image_thumbnail
FULL FUNNEL

KPI 대시보드 | 루커스튜디오

June 3, 2024

KPI 대시보드 | 루커스튜디오

루커스튜디오 KPI 대시보드 메인 썸네일

비즈니스의 주요 지표를 파악하고 데이터 기반 의사결정을 하는 것은 매우 중요합니다.

다양한 기업들을 대상으로 데이터 드리븐 환경 구축을 목적으로 데이터 대시보드를 만들고 있습니다.

그 중 무엇보다 우선적으로 구축하는 것은 비즈니스 주요 지표를 한판에 보면서 전반적인 흐름을 살펴보는 KPI 대시보드 입니다.

KPI 대시보드를 구축하는 방법은 다양하지만 중요한 기준 중 하나는 지표의 표현 방식입니다.

비즈니스 주요 지표는 집계된 숫자로는 그 의미를 한눈에 알 수 없습니다.
(e.g.오늘의 매출 100만원)지표가 데이터로서 충분한 의미를 가지기 위해서는 비교와 비율이 필요합니다.

만약 해당 지표가 시계열 데이터라면 트렌드까지 더해주면 더욱 완벽한 지표 기준이 될 수 있습니다.

예를 들어 아래와 같이 해석할 수 있게 분석과 대시보드가 구성되어야 합니다.

"오늘 매출 100만원은 전일대비 30% 상승한 수치입니다. 다만 최근 1주일 트렌드 기준 하락추세이기 때문에 추가적인 매출 상승 전략이 필요합니다."

해당 내용을 담은 대시보드가 궁금하신 분들은 아래 링크를 확인해주세요.

📑 대시보드 보기

💡 데이터 : KR Superstore

📊 BI : 루커스튜디오

원본 포스팅 링크

KPI 대시보드 | 루커스튜디오

MARTECH_image_thumbnail
CRM

사용자 여정 지도로 CRM 마케팅 전략을 기획하는 방법

May 20, 2024

원시그널 사용자 여정 지도 마티니

*본 게시물은 원시그널 OneSignal의 기능을 중심으로 작성되었습니다.

모바일 사용자 여정에 대해 많이 들어보셨을텐데요, 현재의 참여 전략에 얼마나 적용되고 있는지 궁금하실 겁니다. 전체 사용자 여정에 대한 개요 대신, 최대한의 효과를 위해 참여 캠페인을 우선해야 하는 중요한 순간들을 짚어볼게요.

어떤 행동 지표가 참여 기회를 나타낼까요?

사용자 행동 분석은 사용자 여정에서 중요한 순간을 포착하는 데 강력한 도구입니다. 모바일 사용자 분석 플랫폼을 통해 사용자 상호작용, 세션 시간, 클릭률, 전환 퍼널 등의 지표를 추적하세요. 패턴과 트렌드가 나타나면, 중요한 참여 지점을 발견할 수 있을 거예요.

각 사용자 여정 단계를 분석하기 전에, 다음 세 가지 사용자 참여 지표를 통해 가장 강력한 참여 기회를 찾아보세요.

신호 #1:
모바일 앱 리텐션

리텐션이 낮다는 것은 사용자 경험, 콘텐츠나 기능 부족, 비효율적인 온보딩 프로세스에 문제가 있음을 의미해요. 이 문제를 찾아내어 사용자 재참여를 유도하고 앱의 가치를 재정립하는 캠페인을 진행해야 해요.

앱 내 메시징은 유지율을 27% 개선할 수 있어요. 이 메시징 채널을 사용하여 사전 권한 요청, 새로운 기능 발표, 실시간 사용자 설문조사를 할 수 있습니다.

신호 #2:
전환율

전환율은 또 다른 중요한 참여 기회입니다. 전환율은 사용자가 앱 내에서 원하는 행동을 완료하는 비율을 측정해요. 예를 들어, 많은 사용자가 무료 플랜을 고수하고 프리미엄 구독으로 업그레이드하지 않는다면, 이를 해결하기 위해 앱 내 알림, 이메일 마케팅 캠페인, 푸시 알림을 활용할 수 있어요.

특정 세션 수를 완료한 무료 사용자에게는 할인된 구독 업그레이드 제안을 할 수 있어요. 이러한 제안은 비용 걱정이나 프리미엄 기능의 가치에 대한 불확실성을 해소하는 데 중점을 둡니다.

신호 #3:
사용자 이탈률

마지막으로, 사용자 이탈 패턴을 분석하면 효과적인 참여 전략을 개발하는 데 중요한 통찰을 제공합니다. 이탈률은 사용자가 플랫폼을 떠나는 비율을 나타내요.

사용자 이탈 이유와 패턴을 분석하면, 사용자 기반의 특정 문제점을 파악하고 재참여 기회를 찾을 수 있어요.예를 들어, 사용자가 일정 기간 비활성화 후 이탈한다면, 자동 재참여 이메일이나 푸시 알림을 통해 제품의 가치를 상기시키고 돌아오도록 유도할 수 있어요.

사용자 세분화를 통해 다양한 사용자 그룹의 선호에 맞춘 재참여 콘텐츠를 제공하세요. 앱의 최신 기능, 산업의 새로운 트렌드, 이전 사용자 활동 기반의 맞춤형 추천 등을 공유할 수 있어요.

사용자 여정 단계에 맞춘 맞춤형 참여 전략

모바일 메시징 전략은 사용자 여정의 각 단계에 맞춰 사용자의 필요와 기대에 부응해야 해요. 이러한 요소는 항상 변화하므로, 캠페인도 유연하게 운영해야 최대한의 참여를 이끌어낼 수 있습니다.아래는 모바일 사용자 여정의 각 단계와 단계별로 적용해야 할 세 가지 참여 전략입니다.

1. 발견 및 인식 단계 참여 전략

소셜 미디어를 통해 앱 홍보하기

타겟 소셜 미디어 광고 캠페인을 통해 잠재 사용자들에게 앱을 알리세요. 예를 들어, 새로운 피트니스 앱은 인스타그램이나 페이스북에서 건강과 운동에 관심 있는 사용자들에게 독특한 기능과 혜택을 홍보할 수 있어요.이 단계에서는 리타게팅 광고를 활용하여 이전에 앱과 상호작용했지만 원하는 행동을 완료하지 않은 사용자들을 다시 참여시키세요.

예를 들어, 사용자가 앱의 웹사이트를 방문했지만 앱을 다운로드하지 않았다면, 앱의 주요 기능을 강조하거나 한정된 시간 동안 프로모션을 제공하는 광고를 통해 재참여를 유도하세요.

앱 스토어 최적화 (ASO)

앱 스토어에서 앱의 가시성과 검색 가능성을 높이기 위해 관련 키워드, 매력적인 비주얼, 상세한 앱 설명을 사용하여 앱 목록을 최적화하세요. 키워드 연구와 A/B 테스트와 같은 도구를 사용하여 앱 스토어 최적화 전략을 개선하고, 사용자가 앱을 검색할 때 더 쉽게 찾을 수 있도록 하세요.

 Myfitnesspal의 앱은 하이라이트부터 후기까지 다양한 목록으로 구성되어있습니다.
Myfitnesspal의 앱은 하이라이트부터 후기까지 다양한 목록으로 구성되어있습니다.

레퍼럴 마케팅

기존 사용자에게 친구나 지인에게 앱을 추천하도록 유도하세요. 성공적인 추천에 대해 할인, 크레딧, 독점 보상을 제공하여 참여를 촉진할 수 있어요.

예를 들어, 여행 예약 앱은 추천 링크를 통해 신규 사용자가 가입하면 추천인과 신규 사용자 모두에게 다음 예약 시 할인 혜택을 제공할 수 있습니다.

2. 획득 단계 참여 전략

프리미엄 구독 - 짧은 기간 동안의 혜택 제공사용자가 앱을 다운로드하도록 유도하기 위해 한정된 시간 동안 할인이나 무료 체험을 제공하세요.

예를 들어, 30일 무료 체험을 제공하여 사용자가 프리미엄 기능을 경험하고 앱의 가치를 직접 느낄 수 있도록 하세요.

임신출산 앱 Peanut의 실시간 카운트다운 포함 구독 플랜 제시 화면
이 결제 화면(paywall)은 임신과 출산 앱인 Peanut에서 제공하는 것으로, 구독 플랜을 명확하게 제시하면서 상단에 '실시간 카운트다운' 타이머를 포함해 업그레이드 할인의 한정된 시간 특성을 강조하고 있어요.

소셜프루프 강조

잠재 사용자와의 신뢰를 구축하기 위해 앱의 랜딩 페이지나 마케팅 자료에 긍정적인 후기나 사용자 리뷰를 보여주세요. 실제 성공 사례나 만족한 사용자의 추천을 강조하면 사용자의 걱정을 덜어주고 앱을 다운로드하거나 가입하도록 유도할 수 있습니다.

타겟 재참여 이메일

앱에 관심을 보였지만 아직 행동을 취하지 않은 잠재 사용자에게 이메일 마케팅을 통해 연락하세요. 개인화된 메시지, 제안, 또는 리마인더를 보내어 앱을 다운로드하거나 가입하도록 유도하세요.

예를 들어, 여행 앱은 웹사이트를 방문했지만 아직 여행을 예약하지 않은 사용자에게 독점 할인이나 여행 팁을 제공하는 이메일을 보낼 수 있어요.

The Outbound Collective의 이메일
The Outbound Collective의 이메일은 깔끔한 야외 이미지로 모바일 경험을 돋보이게 하고 있어요.

3. 온보딩 및 탐색 단계 참여 전략

개인화된 온보딩 제공

사용자가 앱의 기능과 사용법을 잘 이해할 수 있도록 개인화된 온보딩 경험을 제공하세요.사용자의 행동에 따라 트리거되는 컨텍스트 기반 온보딩 메시지를 활용하세요. 모든 정보를 처음부터 제공하는 대신, 사용자가 필요할 때 적시에 관련 팁, 설명, 또는 안내 메시지를 제공하세요.

예를 들어, 사용자가 특정 기능을 처음 사용할 때 해당 기능의 목적과 사용 방법을 설명하는 짧은 툴팁이나 메시지를 표시하세요. 이렇게 하면 사용자가 필요한 순간에 안내를 받아 주요 기능을 잘 이해하고 기억할 수 있어요.

한 번에 하나의 앱 영역만 강조한 암호화폐 거래 앱 Binance의 점진적인 온보딩 시퀀스
암호화폐 거래 앱인 Binance는 점진적인 온보딩 시퀀스를 사용하여 신규 사용자가 부담을 느끼지 않도록 한 번에 하나의 앱 영역만 강조해 안내해요.

사용자를 천천히 앱에 적응시키기

점진적 프로파일링 기법을 사용하여 초기 등록 과정에서 사용자를 압도하지 않고 시간이 지나면서 사용자 정보와 선호도를 수집하세요. 온보딩 중에는 기본 정보만 요청하고, 사용자가 앱을 더 많이 사용할수록 추가 정보를 요청하세요.

예를 들어, 피트니스 앱은 처음에 나이, 성별, 운동 목표 등의 기본 정보를 요청하고, 사용자가 앱을 더 많이 사용할수록 운동 선호도나 식이 제한과 같은 세부 정보를 입력하도록 할 수 있어요.

신규 사용자에게 다양한 지원 제공

앱을 탐색하는 동안 사용자에게 지원과 안내를 제공하기 위해 앱 내 메시징과 지원 옵션을 제공하세요. 라이브 채팅 지원, FAQ, 또는 도움말 기사를 앱 내에서 직접 접근할 수 있도록 하여 사용자가 온보딩 및 탐색 중에 자주 겪는 질문이나 문제를 해결할 수 있게 하세요. 이렇게 하면 사용자가 지원받는다는 느낌을 받고 앱의 기능을 탐색하는 데 있어 부담을 덜 수 있어요.

4. 재사용 단계 참여 전략

계속해서 돌아오도록 유도하기사용자에게 푸시 알림이나 이메일을 보내 앱을 다시 방문하고 새로운 콘텐츠나 기능을 탐색하도록 유도하세요.

예를 들어, Adobe Photoshop은 새로운 생성 AI 기능을 강조하는 이메일을 보내 사용자가 새로운 사진 편집 방법을 발견하도록 유도합니다.

원시그널 마티니 포토샵 ai

참여를 재미있게 만들기

도전 과제, 배지, 보상 등의 게임 요소를 도입하여 지속적인 참여와 상호작용을 유도하세요. 특정 작업을 완료하거나, 목표를 달성하거나, 앱 내 커뮤니티 활동에 참여하도록 하는 성취 기반 시스템을 만드세요.

모두가 좋아하는 미스터리 박스예상치 못한 보상, 선물, 또는 개인화된 메시지로 사용자를 놀라게 하고 앱에 대한 긍정적인 경험을 강화하세요. 랜덤 할인, 무료 혜택, 또는 특별 제안을 제공하는 깜짝 캠페인을 통해 사용자의 지속적인 충성도와 참여를 감사하는 표시로 활용하세요.

5. 수익화 단계 참여 전략

체계적인 유지 전략

충성도 프로그램을 도입하거나 프리미엄 기능에 대한 독점 할인 혜택을 제공하여 사용자가 인앱 구매를 하도록 유도하세요. 예를 들어, 게임 앱은 특정 레벨을 완료하거나 이벤트에 참여한 사용자에게 가상 화폐나 특별 아이템을 보상으로 제공하여 추가 구매를 유도할 수 있어요.

투명성 유지

사용자의 돈과 관련된 문제에서는 명확성과 정직함이 중요해요. 구독 관리 프로세스를 간소화하고 구독 플랜, 청구 주기, 갱신 날짜에 대한 투명한 정보를 제공하세요. 다가오는 구독 갱신, 가격 변경, 또는 체험 기간 만료에 대해 사용자에게 미리 알림을 보내 사용자가 구독 상태에 대한 결정을 준비할 수 있도록 하세요.

재정 계획 앱 Monarch의 무료 체험 페이지
재정 계획 앱 Monarch의 무료 체험 페이지는 사용자가 제한된 접근이 어떻게 작동하는지 정확히 안내해 주어 매우 효과적이에요. 모호함 없이 명확하게 설명해 주죠!

플랜 간의 가치 강조

업셀링과 크로스셀링 기법을 도입하여 사용자가 프리미엄 또는 상위 티어 구독 플랜으로 업그레이드하거나 앱 내 추가 제품이나 서비스를 구매하도록 유도하세요. 프리미엄 기능이나 추가 기능의 혜택과 가치를 강조하고, 사용자가 구매하도록 특별 프로모션이나 할인을 제공하세요.예를 들어, 생산성 앱은 무제한 저장소나 협업 도구와 같은 고급 기능이 포함된 프리미엄 플랜을 할인된 가격으로 제공하여 사용자가 추가 기능을 잠금 해제하고 경험을 향상시키도록 유도할 수 있어요.

6. 재구매 단계 참여 전략

사용자 이해하기

사용자의 과거 구매 기록을 바탕으로 개인화된 추천을 제공하여 재구매를 유도하세요. 예를 들어, 패션 앱은 사용자의 이전 구매 기록과 선호도를 기반으로 큐레이션된 컬렉션이나 제품 추천을 포함한 개인화된 이메일이나 푸시 알림을 보내어 재구매를 유도할 수 있어요.

Ray-Ban의 이메일은 사용자의 마지막 쇼핑 기록을 기반으로 개인화되어 있으며, 무료 배송과 간편한 반품과 같은 인센티브를 강조하여 쉬운 쇼핑 경험을 제안합니다.

사용자의 마지막 쇼핑 기록 기반 Ray-Ban의 개인화 이메일

“지금 당장!”

재구매 고객을 위해 한정된 시간 동안 제공되는 할인이나 플래시 세일을 도입하여 긴급함과 흥분을 유발하세요. 시간 제한 할인, 번들, 또는 단기간 동안만 제공되는 특별 프로모션을 통해 사용자가 제안을 이용하도록 유도하세요. 예를 들어, 모바일 게임 앱은 한정된 시간 동안 인게임 화폐나 특별 아이템을 할인된 가격에 판매하는 플래시 세일 이벤트를 개최하여 재구매 고객의 참여와 수익을 창출할 수 있어요.

미리보기와 티저로 기대감 유지

재구매 고객에게 다가올 제품, 기능, 또는 프로모션의 독점 미리보기나 예고를 제공하여 충성도를 보상하고 브랜드에 대한 참여를 유지하세요. 신규 출시, 베타 버전, 또는 아직 일반에게 공개되지 않은 비하인드 콘텐츠에 대한 조기 접근을 제공하여 재구매 고객에게 독점적이고 내부적인 접근 권한을 제공하세요.

7. 충성도 및 유지 단계 참여 전략

사용자들을 하나로 모으기

사용자 포럼, 소셜 미디어 그룹, 또는 독점 콘텐츠를 통해 커뮤니티 감각과 지속적인 참여를 촉진하세요. 예를 들어,명상 앱은 사용자가 경험을 공유하고, 비슷한 생각을 가진 사람들과 연결하며, 가이드 명상 세션이나 전문가와의 라이브 Q&A 세션에 참여할 수 있는 전용 커뮤니티 공간을 만들 수 있어요. 이를 통해 소속감을 느끼게 하고 장기적인 참여와 유지를 유도할 수 있어요.

유명인 파트너십 기반 지역 커뮤니티 이벤트 예시

또는 독립 전기 자전거 회사가 새로운 유명인 파트너십을 지역 커뮤니티 이벤트를 통해 홍보할 수도 있어요.이 전략의 목표는 커뮤니티를 하나로 모으고, 참여하는 사람들을 교육하고 보상하면서 즐겁게 하는 것입니다. 가족처럼 느끼는 사용자 기반은 단지 익명의 고객으로 느끼는 사용자보다 이탈할 가능성이 훨씬 적습니다.

VIP 사용자에게 보상하기

VIP 프로그램이나 충성도 등급을 만들어 가장 충성도가 높고 참여도가 높은 사용자에게 독점 혜택, 특전, 또는 보상을 제공하세요. 조기 세일 접근, VIP 고객 지원, 또는 멤버 전용 이벤트와 같은 특별 권한을 제공하여 지속적인 참여를 유도하고 충성도를 보상하세요.

기념일 축하하기

사용자의 기념일, 이정표, 또는 업적을 축하하여 지속적인 충성도와 참여를 보상하세요. 사용자의 회원 기념일, 생일, 또는 일정 구매 횟수나 포인트 도달 등의 이정표를 기념하는 개인화된 메시지, 가상 배지, 또는 특별 제안을 보내세요.

OneSignal로 사용자 참여 극대화

앱 내 온보딩 시퀀스를 설계하든, 이메일 재참여 캠페인을 자동화하든, 크로스채널 메시징 여정을 시도하든, OneSignal에선 모두 가능합니다.

사용자 여정의 어디에 있든, 강력한 옴니채널 메시징은 장기적으로 개인화된 콘텐츠를 제공하는 데 중요한 역할을 합니다.

마티니와 상담하시면 Onsignal에 대해서 더 자세히 안내받으실 수 있어요.

마티니와 상담하기

*원문 출처 : https://onesignal.com/blog/how-your-user-journey-should-inform-your-engagement-strategy/

*본 게시물은 Onesignal이 작성한 글을 참고하여, Onesignal의 공식 파트너인 마티니가 한국어로 편집 및 재구성하였습니다.

MARTECH_image_thumbnail
CRM

앱 행동 데이터가 말해주는 것

May 20, 2024

원시그널 마티니 앱 사용자 데이터 분석

*본 게시물은 원시그널 OneSignal의 기능을 중심으로 작성되었습니다.

모바일 앱의 성공을 단순히 매출로만 측정하는 경우가 많아요. 하지만 지속 가능한 비즈니스의 진정한 지표는 사용자가 돈을 어떻게 쓰는지보다 시간을 어떻게 쓰는지에 달려 있어요. 사용자는 앱을 사용할 때마다 소중한 데이터를 제공하죠. 이를 통해 문제점과 성공 요인을 발견할 수 있어요. 사용자 행동를 분석하면 매출 보고서보다 더 정확하게 앱의 상태를 진단할 수 있답니다.

앱 행동 분석: 무엇을 추적해야 할까요?

사용자 행동을 추적하는 것은 단순히 참여율을 측정하는 것보다 더 복잡해요. 단기 유지율, 네비게이션 패턴, 오류 보고서 등을 포함해야 하죠.

주요 사용자 행동 지표

  • 유지율(Retention): 특정 기간 동안 앱을 계속 사용하는 사용자 비율을 측정해요.
  • 클릭률 (CTR): 메시지 내 링크나 버튼을 클릭하는 사용자 비율을 추적해요.
  • 전환율(CVR): 메시지와 상호작용한 후 원하는 행동을 완료한 사용자 수를 측정해요.

모바일 메시지 캠페인은 사용자와 소통하는 주요 방법이자 효과를 측정하는 명확한 지표예요. 대부분의 모바일 분석 도구에서 전환율 추적 기능을 제공하지만, 클릭률은 추적하기 어려울 수 있어요.

OneSignal 같은 모바일 메시지 분석 도구를 사용하면 Confirmed Delivery 기능을 통해 실제로 알림을 받은 기기만을 추적해요. 더 정확한 클릭률 측정을 통해 앱 내 광고 배치를 최적화하고, 사용자가 어디서 이탈하는지 파악할 수 있어요.

사용자 상호작용 추적

  • 기능 모니터링: 사용자가 가장 많이 사용하는 기능을 모니터링해요.
  • 세션 길이, 빈도, 이탈: 사용자가 로그인하고 머무르는 시간과 빈도를 추적해요.
  • 네비게이션 패턴: 사용자가 앱에서 어떻게 상품/기능을 탐색하는지 확인해요.

주요 기능에 대한 이벤트 추적을 구현하고, 각 기능과 관련된 다양한 행동을 구분하기 위해 고유한 이벤트 이름을 사용해야 해요. 또한 모바일 히트맵 도구를 사용해 스와이프와 탭 같은 제스처를 시각화할 수 있어요.

원시그널 사용자 상호작용 데이터 추적

앱 성능 및 기술 지표

  • 앱 로딩 시간: 앱 로딩 시간을 측정해요. 로딩 시간이 길어지면 이탈율이 증가해요.
  • 오류 보고서: 앱 오류와 충돌 사례를 모니터링해요.
  • 기기 및 운영체제 버전: 사용자가 사용하는 기기와 운영체제를 파악해요.

퍼포먼스 모니터링 SDK를 통합해 앱 로딩 시간을 데이터로 확인하고, Android Profiler와 iOS의 Xcode Instruments 같은 도구를 활용해요. 느린 로딩 요소를 최적화하면 앱 실행 시간이 빨라지고 사용자 만족도와 참여도가 높아져요.

기타 주목해야 할 사용자 행동 지표

  • 오픈율: 특정 푸시나 SMS 알림을 연 사용자 비율을 측정해요.
  • 가입/장바구니 이탈율: 가입 과정이나 장바구니에 상품을 넣고 완료하지 않은 사용자 비율을 확인해요.
  • 최고 사용 시간: 사용자 활동이 가장 높은 시간대를 파악해 리소스 할당과 콘텐츠 제공을 최적화해요.
  • 사용자당 평균 매출 (ARPU): 사용자 한 명당 평균 매출을 측정해요.
  • 이탈율: 특정 기간 내 앱 사용을 중단한 사용자 비율을 파악해요.
  • 사용자 추천율: 앱을 다른 사람에게 추천하는 사용자 비율을 확인해요.

사용자 행동 지표 해결하기

1. 5일 리텐션이 낮아요

5일 리텐션이 낮다는 것은 앱을 처음 설치하거나 초기 단계에서 사용한 많은 사용자가 첫 주 내에 이탈하고 있다는 것을 의미해요. 이 문제는 온보딩 과정에서의 혼란, 가치 부족, 과도한 커뮤니케이션, 성능 문제 등이 원인일 수 있어요.

이를 해결하기 위해서는 문제점을 파악하는 것이 중요해요. 사용자 피드백을 수집하고, A/B 테스트를 통해 개선할 부분을 찾아보세요.

새로운 사용자가 온보딩 절차의 절반만 진행하는 경우, 환영 흐름을 재구성할 필요가 있을 수 있어요. 템플릿 기반의 인앱 캐러셀은 참여를 유도하는 좋은 방법이에요.

원시그널 마티니 앱 온보딩

또한, 푸시 알림을 최적화하고, 개인화된 재참여 캠페인을 시행하며, 사용자에게 교육 콘텐츠를 제공해보세요. 사용자 친화적인 경험은 장기적인 리텐션을 높여 지속적인 수익을 가져와요.

2. 단기 리텐션은 높지만 장기 리텐션은 낮아요

이 경우는 반대의 문제를 나타내요. 단기 리텐션이 높지만 장기 유지율이 낮다면, 사용자가 초기에는 앱에 참여하지만 장기적으로 관심을 유지하는 데 어려움을 겪고 있다는 뜻이에요.

이는 지속적인 가치 부족, 사용자 기대에 못 미치는 기능, 기능 관련성 문제 등이 원인일 수 있어요. 또는 초기 목표를 달성하고 나서 정기적으로 사용할 이유가 없기 때문일 수도 있어요.

예를 들어, 피트니스 앱이 운동 루틴과 진행 상황을 추적하는 기능을 제공한다면, 처음에는 사용자가 흥미를 느낄 수 있어요. 하지만 새로운 도전 과제나 명확한 지침이 없다면 사용자는 초기 목표를 달성한 후 앱을 계속 사용할 이유를 찾지 못할 수 있어요.

이럴 때는 충성도 프로그램이나 지속적인 인센티브가 도움이 돼요. 잘 설계된 충성도 프로그램은 사용자에게 독점 혜택, 할인, 프리미엄 기능 접근 등을 제공해 장기적인 참여를 유도해요.

사용자에게 앱을 계속 사용할 가치를 제공하는 것이 중요해요. 푸시 알림, 인앱 메시지, 이메일 캠페인을 통해 앱의 장기적인 혜택을 효과적으로 전달하세요.

예를 들어, 피트니스 앱에서 상위 충성도 프로그램을 통해 고급 운동 계획, 영양 가이드, 라이브 트레이닝 세션 등의 독점 콘텐츠를 제공할 수 있어요. 또한, 연속 보너스나 월간 성실도 보상 등을 통해 사용자에게 장기적인 습관을 형성하도록 유도해보세요.

3. 월간 활성 사용자(MAU)가 안정적이에요

월간 활성 사용자(MAU)가 안정적이라는 것은 여러분의 앱이 충성도 높은 사용자 기반을 유지하고 있다는 뜻이에요! 이는 기능 업데이트나 적극적인 크로스 채널 메시징 전략을 통해 사용자가 개인적으로 보상을 느끼도록 하고 있다는 의미일 거예요.

하지만 참여 유도에 대한 노력을 완전히 멈추면 안 돼요. 이제는 앱 UX를 최적화하고 지속적인 성장을 촉진하는 데 집중할 수 있어요.

이 시기에 모바일 A/B 테스트를 진행해 인앱 인터페이스와 메시징을 세밀하게 조정하고, 새로운 사용자를 유치하면서 기존 사용자를 유지할 혁신적인 방법을 모색해보세요. 어떤 이미지, 이모지, 언어가 사용자의 반응을 끌어내는지 테스트하면 유용한 인사이트를 얻을 수 있어요.

원시그널 마티니 인앱메시지 IAM ABtest

안정적인 MAU 기간은 사용자 커뮤니티와 소통하고 피드백을 받아 앱을 개선하는 데 좋은 기회예요. 커뮤니티 이벤트를 통해 공동 참여를 보상하거나, 추천 프로그램을 통해 새로운 사용자를 유치하고 입소문을 통해 성장을 촉진할 수 있어요.

4. 사용자들이 푸시나 이메일 구독을 하지 않아요

사용자들이 푸시 알림이나 이메일 구독을 거부하는 경우, 이는 가치 제안이 명확하지 않거나, 개인정보 보호에 대한 우려, 과도한 커뮤니케이션 때문일 수 있어요. 사용자 피드백을 분석하고, 구독 요청 시점과 맥락을 재평가해보세요. 사용자가 매일 여러 개의 푸시 알림을 받으며 정보 과부하를 느끼고 있지는 않은가요?

사용자는 자신의 인구통계, 선호도, 앱 내 행동에 맞춘 알림에 더 많이 반응해요. OneSignal의 보고서에 따르면, 개인화된 메시지는 일반적인 콘텐츠보다 참여율이 259% 증가한 것으로 나타났어요.

비활성 사용자에게는 더 많은 알림을 보내고, 이미 적극적으로 참여하는 사용자에게는 덜 보내고 있나요? 사용자의 관심사에 따라 메시지 캠페인을 맞춤화하고 있나요? 사용자의 구매 이력이나 앱 내 과거 행동을 활용해 예측 가능한 참여 패턴을 공략하고 있나요? 푸시와 이메일 캠페인을 개인화할 때 이런 점들을 고려해야 해요.

원시그널 마티니 세그멘테이션 화면

또한, 푸시 알림 요청 시 단순히 권한을 요청하는 것보다 구독의 가치를 설명하는 인앱 메시지를 활용해보세요.

5. 결제나 가입 도중 이탈율이 높아요

결제나 가입 도중 이탈율이 높다는 것은 많은 사용자가 과정을 시작하지만 완료하지 못하고 있다는 뜻이에요. 이를 해결하려면 결제나 가입 흐름에서 마찰 지점을 파악하고, 길고 복잡한 양식, 불명확한 지침, 예상치 못한 요구사항 등을 해결해야 해요. 복잡한 가입 과정이나 결제 과정이 사용자를 혼란스럽게 하여 앱을 삭제하게 만들 수 있어요.

이를 해결하려면 가입이나 결제 과정을 간소화하고 양식 필드를 최소화하세요. 사용자가 완료하면 받을 가치를 명확히 전달하고, 데이터 보안을 보장해야 해요. 진행 표시기, 안내 도구, 게스트 체크아웃 옵션 등을 통해 사용자의 부담을 줄일 수 있어요.

장바구니를 자주 포기하는 앱의 경우, 장바구니 구매 유도 캠페인을 실행해보세요. 개인화된 메시지를 통해 사용자가 놓칠 수 있는 상품을 상기시키고, 몇 시간 내에 메시지를 보내고 다음 날 추가 팔로우업을 하세요. 긴급감을 조성해 즉각적인 행동을 유도하는 것도 중요해요. 카운트다운, 독점 제안, 재고 업데이트 등으로 사용자에게 FOMO(놓칠까 봐 두려운 마음)를 유발하세요!

사용자 행동을 이해하는 모바일 메시징 플랫폼

OneSignal을 사용하면 원활한 옴니채널 솔루션으로 사용자 생애 가치를 높일 수 있어요.

앱을 손쉽게 통합할 수 있는 SDK, 자동화된 캠페인을 추적할 수 있는 강력한 메시지 분석 도구, 수집한 사용자 행동을 최대한 활용할 수 있는 세분화 도구를 제공해요.

마티니와 상담하시면 OneSignal에 대해서 더 자세히 안내받으실 수 있어요.

마티니와 상담하기

*원문 출처 : https://onesignal.com/blog/app-user-behavior-analysis/

*본 게시물은 Onesignal이 작성한 글을 참고하여, Onesignal의 공식 파트너인 마티니가 한국어로 편집 및 재구성하였습니다.

MARTECH_image_thumbnail
EVENT

그로스 캠프 1기 Amplitude by Martinee (24.3.27)

April 30, 2024

마티니와 함께 Amplitude 정복하기

그로스 캠프 1기 Amplitude by Martinee 메인 배너

행사명 : [그로스 캠프] Ep.1 - Amplitude by Martinee

장소: 서울 서초구 서초대로38길 12 마제스타시티 타워2 12F

일시: 2024년 4월 3일 ~ 4월 24일 매주 수요일 오후 7시부터 9시

초청 대상: Amplitude 기초 개념부터 실무 활용을 위한 주요 기능들을 배우고 싶은 마케팅에 관심이 있으신 분

웨비나로 워밍업!

그로스 캠프 1기 Amplitude by Martinee 웨비나 목차
그로스 캠프 1기 Amplitude by Martinee 웨비나 화면

본격적으로 오프라인 세션을 시작하기전 전반적인 과정에서의 핵심 내용들과 흐름을 설명하는 시간을 가졌습니다.

웨비나에서는 마티니의 워크플로우와 마티니가 바라보는 그로스 마케팅의 개념을 설명해드렸습니다. 이어서 데이터 (Data) & 프로덕트 (Product) 분석(Analysis)과 마티니의 제품 분석을 통한 개선 사례와 방법을 Amplitude 사례를 기반으로 소개해드렸습니다.

어떻게 진행하였나요?

그로스 캠프 1기 Amplitude by Martinee 리셉션 사진
그로스 캠프 1기 Amplitude by Martinee 현장 준비 사진
그로스 캠프 1기 Amplitude by Martinee 세션 현장 모습
그로스 캠프 1기 Amplitude by Martinee 수강생 모습

오프라인 강의 세션은 LV. 1 세션부터 LV. Expert 세션까지 네 단계 레벨로 나누어 진행되었습니다. 자신에게 필요한 강의만 수강하거나 각 난이도에 알맞는 강의를 선택해서 자유롭게 수강할 수 있었습니다.

오신 분들은 제공해드린 명찰을 가지고 원하는 자리에서 강의를 들을 수 있었고 저녁 시간 때인 만큼 간단한 샌드위치와 음료를 제공해드려 강의에 집중하며 수강하실 수 있게 했습니다.

실습 세션의 경우, 직접 앰플리튜드의 기능을 활용하고 실무에 적용해보실 수 있도록 데모 계정을 통해 실습을 진행하였으며 각 자리에 모니터를 배치하여 충분히 따라오실 수 있게 했습니다.

중간 중간 들었던 이론과 내용을 직접 적용해볼 수 있는 시간도 충분히 가지며 앰플리튜드의 기능을 완전히 이해하는 시간을 가졌습니다.

각 세션 이후에는 수강자분들이 배우신 내용을 잊지 않도록 과제 제도를 통해 복습하실 수 있게 하였으며 성적이 우수하신 분들께는 매주 다섯 분씩 스타벅스 쿠폰을 제공해드렸습니다.과제 덕분에 복습이 잘 되어 좋았다는 후기들을 많이 보내주셨습니다.

과제를 잘 해주신 분과 후기 포스팅을 남겨주신 수강생분들께는 그로스 캠프의 핵심이라고 할 수 있는 마티니만의 108장 분량 앰플리튜드 가이드북까지 제공해드려서 이후에도 스스로 앰플리튜드 솔루션에 대해 학습할 수 있도록 구성했습니다.

어떤 것들을 배웠나요?

앰플리튜드에 첫 걸음 내딛기

그로스 캠프 1기 Amplitude by Martinee LV .1 강사 이재철
그로스 캠프 1기 Amplitude by Martinee LV .1 수강모습

첫 번째 LV. 1 탐색적 데이터 분석(EDA)과 가설 발견을 위한 분석 기초 세션에서는 앰플리튜드를 다루기 전에 알아야 할 한 가지와 앰플리튜드의 활용 목적, 구조, 데이터 택소노미 (Data Taxonomy) 설계에 대해 알아보았고 앰플리튜드의 필수 차트인 세그멘테이션 (Segmentation)과 퍼널 (Funnel), 리텐션 (Retention) 차트를 활용하여 분석 기초를 진행해보았습니다.

앰플리튜드와 친해지기

그로스 캠프 1기 Amplitude by Martinee LV .2 수강생과 강사 이재철님 모습
그로스 캠프 1기 Amplitude by Martinee LV .2 세션 모습

두 번째 LV. 2 Cohort / LTV / Lifecycle 분석을 활용한 제품 분석 & 유저 분석 심화 세션에서는  DAU & MAU와 LifeCycle, Revenue와 LTV, Sign up과 Engagement를 살펴보고 코호트 (Cohort) 분석 정의와 활용에 대해 알아보았습니다.

앰플리튜드로 비즈니스 성장시키기

그로스 캠프 1기 Amplitude by Martinee LV .3 강사 이재철
그로스 캠프 1기 Amplitude by Martinee LV .3 수강생 모습

세 번째 LV. 3 비즈니스 성장을 위한 유저 여정 분석(AARRR)과 그로스 모델링 세션에서는 앰플리튜드에서 대시보드를 만드는 방법과 AARRR의 각 단계인 획득 (Acquisition) , 활성화 (Activation), 구매 (Revenue), 재방문 (Retention), 추천 (Referral)의 유저 여정 분석과 그로스 모델링에 대해 배우는 시간을 가졌습니다.

앰플리튜드로 마케팅 정복하기

그로스 캠프 1기 Amplitude by Martinee LV .Expert 세션 시작 모습
그로스 캠프 1기 Amplitude by Martinee LV .Expert 강사 이재철

마지막 LV. Expert Performance & CRM & Growth 분석에 대한 실행을 위한 마케팅 분석 & 자동화 Case Study 세션에서는 통합 마케팅 환경을 구축하는 방법에 대해 알아보았으며 브레이즈와 앰플리튜드, 에어브릿지 연동과 각 역할 및 기능에 대해 설명했습니다.

앰플리튜드 활용법과 비즈니스 성공 노하우를 배우고 싶으시다면 5월에 진행 예정인 마티니 그로스 캠프 2기에 신청하세요!

마티니가 여러분의 비즈니스 성공을 위해 언제나 함께 합니다.